50 resultados para true abnormal dta elimination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fragile X syndrome arises from blocked expression of the fragile X mental retardation protein (FMRP). Golgi-impregnated mature cerebral cortex from fragile X patients exhibits long, thin, tortuous postsynaptic spines resembling spines observed during normal early neocortical development. Here we describe dendritic spines in Golgi-impregnated cerebral cortex of transgenic fragile X gene (Fmr1) knockout mice that lack expression of the protein. Dendritic spines on apical dendrites of layer V pyramidal cells in occipital cortex of fragile X knockout mice were longer than those in wild-type mice and were often thin and tortuous, paralleling the human syndrome and suggesting that FMRP expression is required for normal spine morphological development. Moreover, spine density along the apical dendrite was greater in the knockout mice, which may reflect impaired developmental organizational processes of synapse stabilization and elimination or pruning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK−/− rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK−/− mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK−/− mice raised in constant darkness. One day of constant light caused the rods in the RK−/− mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SEK1 (MKK4/JNKK) is a mitogen-activated protein kinase activator that has been shown to participate in vitro in two stress-activated cascades terminating with the SAPK and p38 kinases. To define the role of SEK1 in vivo, we studied stress-induced signaling in SEK1−/− embryonic stem and fibroblast cells and evaluated the phenotype of SEK1−/− mouse embryos during development. Studies of SEK1−/− embryonic stem cells demonstrated defects in stimulated SAPK phosphorylation but not in the phosphorylation of p38 kinase. In contrast, SEK1−/− fibroblasts exhibited defects in both SAPK and p38 phosphorylation, demonstrating that crosstalk exists between the stress-activated cascades. Tumor necrosis factor α and interleukin 1 stimulation of both stress-activated cascades are severely affected in the SEK1−/− fibroblast cells. SEK1 deficiency leads to embryonic lethality after embryonic day 12.5 and is associated with abnormal liver development. This phenotype is similar to c-jun null mouse embryos and suggests that SEK1 is required for phosphorylation and activation of c-jun during the organo-genesis of the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G proteins play a major role in signal transduction upon platelet activation. We have previously reported a patient with impaired agonist-induced aggregation, secretion, arachidonate release, and Ca2+ mobilization. Present studies demonstrated that platelet phospholipase A2 (cytosolic and membrane) activity in the patient was normal. Receptor-mediated activation of glycoprotein (GP) IIb-IIIa complex measured by flow cytometry using antibody PAC-1 was diminished despite normal amounts of GPIIb-IIIa on platelets. Ca2+ release induced by guanosine 5′-[γ-thio]triphosphate (GTP[γS]) was diminished in the patient’s platelets, suggesting a defect distal to agonist receptors. GTPase activity (a function of α-subunit) in platelet membranes was normal in resting state but was diminished compared with normal subjects on stimulation with thrombin, platelet-activating factor, or the thromboxane A2 analog U46619. Binding of 35S-labeled GTP[γS] to platelet membranes was decreased under both basal and thrombin-stimulated states. Iloprost (a stable prostaglandin I2 analog) -induced rise in cAMP (mediated by Gαs) and its inhibition (mediated by Gαi) by thrombin in the patient’s platelet membranes were normal. Immunoblot analysis of Gα subunits in the patient’s platelet membranes showed a decrease in Gαq (<50%) but not Gαi, Gαz, Gα12, and Gα13. These studies provide evidence for a hitherto undescribed defect in human platelet G-protein α-subunit function leading to impaired platelet responses, and they provide further evidence for a major role of Gαq in thrombin-induced responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor necrosis factor (TNF) family cytokines lymphotoxin (LT) α and LTβ form heterotrimers that are expressed on the surface of activated lymphocytes and natural killer cells; LTα homotrimers can be secreted as well. Mice with a disrupted LTα gene lack lymph nodes (LN), Peyer’s patches (PP), and follicular dendritic cell (FDC) networks and reveal profound defects of the splenic architecture. However, it is unclear which of these abnormalities is the result of the absence in LTα homotrimers or LTαβ heterotrimers. To distinguish between these two possibilities, a mouse strain deficient in LTβ was created employing Cre/loxP-mediated gene targeting. Mice deficient in LTβ reveal severe defects in organogenesis of the lymphoid system similar to those of LTα−/− mice, except that mesenteric and cervical LN are present in most LTβ-deficient mice. Both LTβ- and LTα-deficient mice show significant lymphocytosis in the circulation and peritoneal cavity and lymphocytic infiltrations in lungs and liver. After immunization, PNA-positive B cell clusters were detected in the splenic white pulp of LTβ-deficient mice, but FDC networks were severely underdeveloped. Collectively, these results indicate that LTα can signal independently from LTβ in the formation of PNA-positive foci in the spleen, and especially in the development of mesenteric and cervical LN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modification of the Paul–Straubel trap previously described by us may profitably be operated in a Paul–Straubel–Kingdon (PSK) mode during the initial loading of an individual ion into the trap. Thereby the coating of the trap ring electrode by the atomic beam directed upon it in earlier experiments is eliminated, as is the ionization of an already trapped ion. Coating created serious problems as it spot-wise changed the work function of the ring electrode, which caused large, uncontrolled dc fields in the trap center that prevented zero-point confinement. Operating the Paul–Straubel trap with a small negative bias on the ring electrode wire is all that is required to realize the PSK mode. In this mode the tiny ring trap in the center of the long, straight wire section is surrounded by a second trapping well shaped like a long, thin-walled cylindrical shell and extending to the end-caps. There, ions may be conveniently created in this well without danger of coating the ring with barium. In addition, the long second well is useful as a multi-ion reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing autoreactive B cells edit their B cell antigen receptor (BCR) in the bone marrow and are clonally deleted when they fail to reexpress an innocent BCR. Here, inducible Cre-loxP-mediated gene inversion is used to change the specificity of the BCR on mature IgM+ IgD+ B cells in vivo to address the fate of lymphocytes encountering self-antigens at this developmental stage. Expression of an autoreactive BCR on mature B cells leads to their rapid elimination from the periphery, a process that is inhibited by constitutive bcl-2 transgene expression in an antigen dose-dependent manner. Thus, selection of mature B cells into the long-lived peripheral pool does not prevent their deletion upon encounter of self-antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that branched polyamines, including polyamidoamide dendimers, polypropyleneimine, and polyethyleneimine, are able to purge PrPSc, the protease-resistant isoform of the prion protein, from scrapie-infected neuroblastoma (ScN2a) cells in culture. The removal of PrPSc by these compounds depends on both the concentration of branched polymer and the duration of exposure. Chronic exposure of ScN2a cells to low noncytotoxic concentrations of branched polyamines for 1 wk reduced PrPSc to an undetectable level, a condition that persisted at least 3 wk after removal of the compound. Structure–activity analysis revealed that a high surface density of primary amino groups is required for polyamines to eliminate PrPSc effectively from cells. The removal of PrPSc by branched polyamines is attenuated by chloroquine in living cells, and exposure of scrapie-infected brain extracts with branched polyamines at acidic pH rendered the PrPSc susceptible to protease in vitro, suggesting that endosomes or lysozomes may be the site of action. Our studies suggest that branched polyamines might be useful therapeutic agents for treatment of prion diseases and perhaps a variety of other degenerative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term potentiation (LTP) in the hippocampal slice preparation has been proposed as an in vitro model for long-term memory. However, correlation of LTP with memory in living animals has been difficult to demonstrate. Furthermore, in the last few years evidence has accumulated that dissociate the two. Because potassium channels might determine the weight of synapses in networks, we studied the role of Kv1.4, a presynaptic A-type voltage-dependent K+ channel, in both memory and LTP. Reverse transcription–PCR and Western blot analysis with specific antibodies showed that antisense oligodeoxyribonucleotide to Kv1.4 microinjected intraventricularly into rat brains obstructed hippocampal Kv1.4 mRNA, “knocking down” the protein in the hippocampus. This antisense knockdown had no effect on rat spatial maze learning, memory, or exploratory behavior, but eliminated both early- and late-phase LTP and reduced paired-pulse facilitation (a presynaptic effect) in CA1 pyramidal neurons without affecting dentate gyrus LTP. This presynaptic Kv1.4 knockdown together with previous postsynaptic Kv1.1 knockdown demonstrates that CA1 LTP is neither necessary nor sufficient for rat spatial memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cpefat mice carry a mutation in the carboxypeptidase E/H gene which encodes an exopeptidase that removes C-terminal basic residues from endoproteolytically cleaved hormone intermediates. These mice have endocrine disorders including obesity, infertility, and hyperproinsulinemia–diabetes syndrome, but the etiology remains an enigma. Because studies have identified membrane carboxypeptidase E as a sorting receptor for targeting prohormones to the regulated secretory pathway for processing and secretion, the intracellular routing and secretion of pro-opiomelanocortin/adrenocorticotropin and growth hormone from anterior pituitary cells were investigated in Cpefat mice. In Cpefat mice, pro-opiomelanocortin was accumulated 24-fold above normal animals in the pituitary and it was poorly processed to adrenocorticotropin. Furthermore, pro-opiomelanocortin was secreted constitutively at high levels, showing no response to stimulation by corticotropin-releasing hormone. Similarly, growth hormone release was constitutive and did not respond to high K+ stimulation. Both pro-opiomelanocortin and growth hormone levels were elevated in the circulation of Cpefat mice versus normal mice. These data provide evidence that the lack of carboxypeptidase E, the sorting receptor, results in the intracellular misrouting and secretion of pro-opiomelanocortin and growth hormone via the constitutive pathway in the pituitary of Cpefat mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer relapse after surgery is a common occurrence, most frequently resulting from the outgrowth of minimal residual disease in the form of metastases. We examined the effectiveness of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade as an adjunctive immunotherapy to reduce metastatic relapse after primary prostate tumor resection. For these studies, we developed a murine model in which overt metastatic outgrowth of TRAMP-C2 (C2) prostate cancer ensues after complete primary tumor resection. Metastatic relapse in this model occurs reliably and principally within the draining lymph nodes in close proximity to the primary tumor, arising from established metastases present at the time of surgery. Using this model, we demonstrate that adjunctive CTLA-4 blockade administered immediately after primary tumor resection reduces metastatic relapse from 97.4 to 44%. Consistent with this, lymph nodes obtained 2 weeks after treatment reveal marked destruction or complete elimination of C2 metastases in 60% of mice receiving adjunctive anti-CTLA-4 whereas 100% of control antibody-treated mice demonstrate progressive C2 lymph node replacement. Our study demonstrates the potential of adjunctive CTLA-4 blockade immunotherapy to reduce cancer relapse emanating from minimal residual metastatic disease and may have broader implications for improving the capability of immunotherapy by combining such forms of therapy with other cytoreductive measures including surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent γ-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.