48 resultados para tissue and cell culture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibronectin (FN) forms the primitive fibrillar matrix in both embryos and healing wounds. To study the matrix in living cell cultures, we have constructed a cell line that secretes FN molecules chimeric with green fluorescent protein. These FN–green fluorescent protein molecules were assembled into a typical matrix that was easily visualized by fluorescence over periods of several hours. FN fibrils remained mostly straight, and they were seen to extend and contract to accommodate movements of the cells, indicating that they are elastic. When fibrils were broken or detached from cells, they contracted to less than one-fourth of their extended length, demonstrating that they are highly stretched in the living culture. Previous work from other laboratories has suggested that cryptic sites for FN assembly may be exposed by tension on FN. Our results show directly that FN matrix fibrils are not only under tension but are also highly stretched. This stretched state of FN is an obvious candidate for exposing the cryptic assembly sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synapses of the hippocampal mossy fiber pathway exhibit several characteristic features, including a unique form of long-term potentiation that does not require activation of the N-methyl-D-aspartate receptor by glutamate, a complex postsynaptic architecture, and sprouting in response to seizures. However, these connections have proven difficult to study in hippocampal slices because of their relative paucity (<0.4%) compared to commissural-collateral synapses. To overcome this problem, we have developed a novel dissociated cell culture system in which we have enriched mossy fiber synapses by increasing the ratio of granule-to-pyramidal cells. As in vivo, mossy fiber connections are composed of large dynorphin A-positive varicosities contacting complex spines (but without a restricted localization). The elementary synaptic connections are glutamatergic, inhibited by dynorphin A, and exhibit N-methyl-D-aspartate-independent long-term potentiation. Thus, the simplicity and experimental accessibility of this enriched in vitro mossy fiber pathway provides a new perspective for studying nonassociative plasticity in the mammalian central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trisomy 21 (Down syndrome) is associated with a high incidence of Alzheimer disease and with deficits in cholinergic function in humans. We used the trisomy 16 (Ts16) mouse model for Down syndrome to identify the cellular basis for the cholinergic dysfunction. Cholinergic neurons and cerebral cortical astroglia, obtained separately from Ts16 mouse fetuses and their euploid littermates, were cultured in various combinations. Choline acetyltransferase activity and cholinergic neuron number were both depressed in cultures in which both neurons and glia were derived from Ts16 fetuses. Cholinergic function of normal neurons was significantly down-regulated by coculture with Ts16 glia. Conversely, neurons from Ts16 animals could express normal cholinergic function when grown with normal glia. These observations indicate that astroglia may contribute strongly to the abnormal cholinergic function in the mouse Ts16 model for Down syndrome. The Ts16 glia could lack a cholinergic supporting factor present in normal glia or contain a factor that down-regulates cholinergic function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin receptor and downstream signaling proteins, and this activation persisted for longer periods than that obtained with free insulin, probably explaining the greater mitogenic effect of the immobilized insulin. Finally the immobilized-insulin film was usable repeatedly without marked loss of activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five structurally related thiophene and furane analogues of the oxathiin carboxanilide derivative NSC 615985 (UC84) (designated UC10, UC68, UC81, UC42, and UC16) were identified as potent inhibitors of HIV-1 replication in cell culture and HIV-1 reverse transcriptase activity. These compounds were markedly active against a series of mutant HIV-1 strains, containing the Leu-100-->Ile, Val-106-->Ala, Glu-138-->Lys, or Tyr-181-->Cys mutations in their reverse transcriptase. However, the thiocarboxanilide derivatives selected for mutations at amino acid positions 100 (Leu-->Ile), 101 (Lys-->Ile/Glu), 103 (Lys-->Thr/Asp) and 141 (Gly-->Glu) in the HIV-1 reverse transcriptase. The compounds completely suppressed HIV-1 replication and prevented the emergence of resistant virus strains when used at 1.3-6.6 microM--that is, 10- to 25-fold lower than the concentration required for nevirapine and bis(heteroaryl)piperazine (BHAP) U90152 to do so. If UC42 was combined with the [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"- oxathiole-2",2"-dioxide)]-beta-D-pentofuranosyl (TSAO) derivative of N3-methylthymine (TSAO-m3T), virus breakthrough could be prevented for a much longer time, and at much lower concentrations, than if the compounds were used individually. Virus breakthrough could be suppressed for even longer, and at lower drug concentrations, if BHAP was added to the combination of UC42 with TSAO-m3T, which points to the feasibility of two- or three-drug combinations in preventing virus breakthrough and resistance development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19ARF synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small HIV-1 accessory protein Vpr (virus protein R) is a multifunctional protein that is present in the serum and cerebrospinal fluid of AIDS patients. We previously showed that Vpr can form cation-selective ion channels across planar lipid bilayers, introducing the possibility that, if incorporated into the membranes of living cells, Vpr might form ion channels and consequently perturb the maintained ionic gradient. In this study, we demonstrate, by a variety of approaches, that Vpr added extracellularly to intact cells does indeed form ion channels. We use confocal laser scanning microscopy to examine the subcellular localization of fluorescently labeled Vpr. Plasmalemma depolarization and damage are examined using the anionic potential-sensitive dye bis(1,3-dibutylbarbituric acid) trimethine oxonol and propidium iodide (PI), respectively, and the effect of Vpr on whole-cell current is demonstrated directly by using the patch-clamp technique. We show that recombinant purified extracellular Vpr associates with the plasmalemma of hippocampal neurons to cause a large inward cation current and depolarization of the plasmalemma, eventually resulting in cell death. Thus, we demonstrate a physiological action of extracellular Vpr and present its mechanistic basis. These findings may have important implications for neuropathologies in AIDS patients who possess significant amounts of Vpr in the cerebrospinal fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-P antibodies present in sera from patients with chronic Chagas heart disease (cChHD) recognize peptide R13, EEEDDDMGFGLFD, which encompasses the C-terminal region of the Trypanosoma cruzi ribosomal P1 and P2 proteins. This peptide shares homology with the C-terminal region (peptide H13 EESDDDMGFGLFD) of the human ribosomal P proteins, which is in turn the target of anti-P autoantibodies in systemic lupus erythematosus (SLE), and with the acidic epitope, AESDE, of the second extracellular loop of the β1-adrenergic receptor. Anti-P antibodies from chagasic patients showed a marked preference for recombinant parasite ribosomal P proteins and peptides, whereas anti-P autoantibodies from SLE reacted with human and parasite ribosomal P proteins and peptides to the same extent. A semi-quantitative estimation of the binding of cChHD anti-P antibodies to R13 and H13 using biosensor technology indicated that the average affinity constant was about 5 times higher for R13 than for H13. Competitive enzyme immunoassays demonstrated that cChHD anti-P antibodies bind to the acidic portions of peptide H13, as well as to peptide H26R, encompassing the second extracellular loop of the β1 adrenoreceptor. Anti-P antibodies isolated from cChHD patients exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats, which resembles closely that of anti-β1 receptor antibodies isolated from the same patient. In contrast, SLE anti-P autoantibodies have no functional effect. Our results suggest that the adrenergic-stimulating activity of anti-P antibodies may be implicated in the induction of functional myocardial impairments observed in cChHD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the myc family of nuclear protooncogenes play roles in cell proliferation, differentiation, and apoptosis. Moreover, inappropriate expression of c-myc genes contributes to the development of many types of cancers, including B cell lymphomas in humans. Although Myc proteins have been shown to function as transcription factors, their immediate effects on the cell have not been well defined. Here we have utilized a murine model of lymphomagenesis (Eμ-myc mice) to show that constitutive expression of a c-myc transgene under control of the Ig heavy-chain enhancer (Eμ) results in an increase in cell size of normal pretransformed B lymphocytes at all stages of B cell development. Furthermore, we show that c-Myc-induced growth occurs independently of cell cycle phase and correlates with an increase in protein synthesis. These results suggest that Myc may normally function by coordinating expression of growth-related genes in response to mitogenic signals. Deregulated c-myc expression may predispose to cancer by enhancing cell growth to levels required for unrestrained cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using truncated forms of recombinant yeast karyopherins α and β in in vitro binding assays, we mapped the regions of karyopherin α that bind to karyopherin β and the regions of karyopherin β that interact with karyopherin α and with Ran-GTP. Karyopherin α’s binding region for karyopherin β was localized to its N-terminal domain, which contains several clusters of basic residues, whereas karyopherin β’s binding region for karyopherin α was localized to an internal region containing two clusters of acidic residues. Karyopherin β’s binding region for Ran-GTP overlaps with that for karyopherin α and comprises at least one of the two acidic clusters required for karyopherin α binding in addition to further downstream determinants not required for karyopherin α binding. Overexpression in yeast of fragments containing either karyopherin β’s binding region for α and Ran-GTP or karyopherin α’s binding region for β resulted in sequestration of most of the cytosolic karyopherin α or karyopherin β, respectively, in complexes containing the truncated proteins. As these binding region-containing fragments lack other domains required for function of the corresponding protein, the overexpression of either fragment also inhibited in vivo nuclear import of a model reporter protein as well as cell growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between telomerase activity and human tumors has led to the hypothesis that tumor growth requires reactivation of telomerase and that telomerase inhibitors represent a class of chemotherapeutic agents. Herein, we examine the effects of inhibition of telomerase inside human cells. Peptide nucleic acid and 2′-O-MeRNA oligomers inhibit telomerase, leading to progressive telomere shortening and causing immortal human breast epithelial cells to undergo apoptosis with increasing frequency until no cells remain. Telomere shortening is reversible: if inhibitor addition is terminated, telomeres regain their initial lengths. Our results validate telomerase as a target for the discovery of anticancer drugs and supply general insights into the properties that successful agents will require regardless of chemical type. Chemically similar oligonucleotides are in clinical trials and have well characterized pharmacokinetics, making the inhibitors we describe practical lead compounds for testing for an antitelomerase chemotherapeutic strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder known in humans. A candidate gene for HH called HFE has recently been cloned that encodes a novel member of the major histocompatibility complex class I family. Most HH patients are homozygous for a Cys-282→Tyr (C282Y) mutation in HFE gene, which has been shown to disrupt interaction with β2-microglobulin; a second mutation, His-63→Asp (H63D), is enriched in HH patients who are heterozygous for C282Y mutation. The aims of this study were to determine the effects of the C282Y and H63D mutations on the cellular trafficking and degradation of the HFE protein in transfected COS-7 cells. The results indicate that, while the wild-type and H63D HFE proteins associate with β2-microglobulin and are expressed on the cell surface of COS-7 cells, these capabilities are lost by the C282Y HFE protein. We present biochemical and immunofluorescence data that indicate that the C282Y mutant protein: (i) is retained in the endoplasmic reticulum and middle Golgi compartment, (ii) fails to undergo late Golgi processing, and (iii) is subject to accelerated degradation. The block in intracellular transport, accelerated turnover, and failure of the C282Y protein to be presented normally on the cell surface provide a possible basis for impaired function of this mutant protein in HH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scatter factor/hepatocyte growth factor regulates scattering and morphogenesis of epithelial cells through activation of the MET tyrosine kinase receptor. In particular, the noncatalytic C-terminal tail of MET contains two autophosphorylation tyrosine residues, which form a multisubstrate-binding site for several cytoplasmic effectors and are thought to be essential for signal transduction. We show here that a MET receptor mutated on the four C-terminal tyrosine residues, Y1311F, Y1347F, Y1354F, and Y1363F, can induce efficiently a transcriptional response and cell scattering, whereas it cannot induce cell morphogenesis. Although the mutated receptor had lost its ability to recruit and/or activate known signaling molecules, such as GRB2, SHC, GAB1, and PI3K, by using a sensitive association–kinase assay we found that the mutated receptor can still associate and phosphorylate a ∼250-kDa protein. By further examining signal transduction mediated by the mutated MET receptor, we established that it can transmit efficient RAS signaling and that cell scattering by the mutated MET receptor could be inhibited by a pharmacological inhibitor of the MEK-ERK (MAP kinase kinase–extracellular signal-regulated kinase) pathway. We propose that signal transduction by autophosphorylation of the C-terminal tyrosine residues is not the sole mechanism by which the activated MET receptor can transmit RAS signaling and cell scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Alzheimer’s disease the neuronal microtubule-associated protein tau becomes highly phosphorylated, loses its binding properties, and aggregates into paired helical filaments. There is increasing evidence that the events leading to this hyperphosphorylation are related to mitotic mechanisms. Hence, we have analyzed the physiological phosphorylation of endogenous tau protein in metabolically labeled human neuroblastoma cells and in Chinese hamster ovary cells stably transfected with tau. In nonsynchronized cultures the phosphorylation pattern was remarkably similar in both cell lines, suggesting a similar balance of kinases and phosphatases with respect to tau. Using phosphopeptide mapping and sequencing we identified 17 phosphorylation sites comprising 80–90% of the total phosphate incorporated. Most of these are in SP or TP motifs, except S214 and S262. Since phosphorylation of microtubule-associated proteins increases during mitosis, concomitant with increased microtubule dynamics, we analyzed cells mitotically arrested with nocodazole. This revealed that S214 is a prominent phosphorylation site in metaphase, but not in interphase. Phosphorylation of this residue strongly decreases the tau–microtubule interaction in vitro, suppresses microtubule assembly, and may be a key factor in the observed detachment of tau from microtubules during mitosis. Since S214 is also phosphorylated in Alzheimer’s disease tau, our results support the view that reactivation of the cell cycle machinery is involved in tau hyperphosphorylation.