66 resultados para random mutagenesis
Resumo:
The SecY/Sec61α family of membrane proteins are the central subunits of the putative protein translocation channel. We introduced random mutations into a segment of Escherichia coli SecY within its cytoplasmic domain 5, which was shown previously to be important for the SecA-dependent translocation activity. Mutations were classified into those retaining function and those gaining a dominant-interfering ability caused by a loss of function. These analyses showed that Arg-357, Pro-358, Gly-359, and Thr-362 are functionally important; Arg-357, conserved in almost all organisms, was identified as an indispensable residue.
Resumo:
Expression of Thermus aquaticus (Taq) DNA polymerase I (pol I) in Escherichia, coli complements the growth defect caused by a temperature-sensitive mutation in the host pol I. We replaced the nucleotide sequence encoding amino acids 659-671 of the O-helix of Taq DNA pol I, corresponding to the substrate binding site, with an oligonucleotide containing random nucleotides. Functional Taq pol I mutants were selected based on colony formation at the nonpermissive temperature. By using a library with 9% random substitutions at each of 39 positions, we identified 61 active Taq pol I mutants, each of which contained from one to four amino acid substitutions. Some amino acids, such as alanine-661 and threonine-664, were tolerant of several or even many diverse replacements. In contrast, no replacements or only conservative replacements were identified at arginine-659, lysine-663, and tyrosine-671. By using a library with totally random nucleotides at five different codons (arginine-659, arginine-660, lysine-663, phenylalanine-667, and glycine-668), we confirmed that arginine-659 and lysine-663 were immutable, and observed that only tyrosine substituted for phenylalanine-667. The two immutable residues and the two residues that tolerate only highly conservative replacements lie on the side of O-helix facing the incoming deoxynucleoside triphosphate, as determined by x-ray analysis. Thus, we offer a new approach to assess concordance of the active conformation of an enzyme, as interpreted from the crystal structure, with the active conformation inferred from in vivo function.
Resumo:
Catalytic antibodies have shown great promise for catalyzing a tremendously diverse set of natural and unnatural chemical transformations. However, few catalytic antibodies have efficiencies that approach those of natural enzymes. In principle, random mutagenesis procedures such as phage display could be used to improve the catalytic activities of existing antibodies; however, these studies have been hampered by difficulties in the recombinant expression of antibodies. Here, we have grafted the antigen binding loops from a murine-derived catalytic antibody, 17E8, onto a human antibody framework in an effort to overcome difficulties associated with recombinant expression and phage display of this antibody. “Humanized” 17E8 retained similar catalytic and hapten binding properties as the murine antibody while levels of functional Fab displayed on phage were 200-fold higher than for a murine variable region/human constant region chimeric Fab. This construct was used to prepare combinatorial libraries. Affinity panning of these resulted in the selection of variants with 2- to 8-fold improvements in binding affinity for a phosphonate transition-state analog. Surprisingly, none of the affinity-matured variants was more catalytically active than the parent antibody and some were significantly less active. By contrast, a weaker binding variant was identified with 2-fold greater catalytic activity and incorporation of a single substitution (Tyr-100aH → Asn) from this variant into the parent antibody led to a 5-fold increase in catalytic efficiency. Thus, phage display methods can be readily used to optimize binding of catalytic antibodies to transition-state analogs, and when used in conjunction with limited screening for catalysis can identify variants with higher catalytic efficiencies.
Resumo:
We have used in vitro evolution to probe the relationship between stability and activity in a mesophilic esterase. Previous studies of these properties in homologous enzymes evolved for function at different temperatures have suggested that stability at high temperatures is incompatible with high catalytic activity at low temperatures through mutually exclusive demands on enzyme flexibility. Six generations of random mutagenesis, recombination, and screening stabilized Bacillus subtilis p-nitrobenzyl esterase significantly (>14°C increase in Tm) without compromising its catalytic activity at lower temperatures. Furthermore, analysis of the stabilities and activities of large numbers of random mutants indicates that these properties are not inversely correlated. Although enhanced thermostability does not necessarily come at the cost of activity, the process by which the molecule adapts is important. Mutations that increase thermostability while maintaining low-temperature activity are very rare. Unless both properties are constrained (by natural selection or screening) the evolution of one by the accumulation of single amino acid substitutions typically comes at the cost of the other, regardless of whether the two properties are inversely correlated or not correlated at all.
Resumo:
Random mutagenesis and screening for enzymatic activity has been used to engineer horse heart myoglobin to enhance its intrinsic peroxidase activity. A chemically synthesized gene encoding horse heart myoglobin was subjected to successive cycles of PCR random mutagenesis. The mutated myoglobin gene was expressed in Escherichia coli LE392, and the variants were screened for peroxidase activity with a plate assay. Four cycles of mutagenesis and screening produced a series of single, double, triple, and quadruple variants with enhanced peroxidase activity. Steady-state kinetics analysis demonstrated that the quadruple variant T39I/K45D/F46L/I107F exhibits peroxidase activity significantly greater than that of the wild-type protein with k1 (for H2O2 oxidation of metmyoglobin) of 1.34 × 104 M−1 s−1 (≈25-fold that of wild-type myoglobin) and k3 [for reducing the substrate (2, 2′-azino-di-(3-ethyl)benzthiazoline-6-sulfonic acid] of 1.4 × 106 M−1 s−1 (1.6-fold that of wild-type myoglobin). Thermal stability of these variants as measured with circular dichroism spectroscopy demonstrated that the Tm of the quadruple variant is decreased only slightly compared with wild-type (74.1°C vs. 76.5°C). The rate constants for binding of dioxygen exhibited by the quadruple variant are identical to the those observed for wild-type myoglobin (kon, 22.2 × 10−6 M−1 s−1 vs. 22.3 × 10−6 M−1 s−1; koff, 24.3 s−1 vs. 24.2 s−1; KO2, 0.91 × 10−6 M−1 vs. 0.92 × 10−6 M−1). The affinity of the quadruple variant for CO is increased slightly (kon, 0.90 × 10−6 M−1s−1 vs. 0.51 × 10−6 M−1s−1; koff, 5.08 s−1 vs. 3.51 s−1; KCO, 1.77 × 10−7 M−1 vs. 1.45 × 10−7 M−1). All four substitutions are in the heme pocket and within 5 Å of the heme group.
Resumo:
We demonstrate that the ligand pocket of a lipocalin from Pieris brassicae, the bilin-binding protein (BBP), can be reshaped by combinatorial protein design such that it recognizes fluorescein, an established immunological hapten. For this purpose 16 residues at the center of the binding site, which is formed by four loops on top of an eight-stranded β-barrel, were subjected to random mutagenesis. Fluorescein-binding BBP variants were then selected from the mutant library by bacterial phage display. Three variants were identified that complex fluorescein with high affinity, exhibiting dissociation constants as low as 35.2 nM. Notably, one of these variants effects almost complete quenching of the ligand fluorescence, similarly as an anti-fluorescein antibody. Detailed ligand-binding studies and site-directed mutagenesis experiments indicated (i) that the molecular recognition of fluorescein is specific and (ii) that charged residues at the center of the pocket are responsible for tight complex formation. Sequence comparison of the BBP variants directed against fluorescein with the wild-type protein and with further variants that were selected against several other ligands revealed that all of the randomized amino acid positions are variable. Hence, a lipocalin can be used for generating molecular pockets with a diversity of shapes. We term this class of engineered proteins “anticalins.” Their one-domain scaffold makes them a promising alternative to antibodies to create a stable receptor protein for a ligand of choice.
Resumo:
Much has been learned about vertebrate development by random mutagenesis followed by phenotypic screening and by targeted gene disruption followed by phenotypic analysis in model organisms. Because the timing of many developmental events is critical, it would be useful to have temporal control over modulation of gene function, a luxury frequently not possible with genetic mutants. Here, we demonstrate that small molecules capable of conditional gene product modulation can be identified through developmental screens in zebrafish. We have identified several small molecules that specifically modulate various aspects of vertebrate ontogeny, including development of the central nervous system, the cardiovascular system, the neural crest, and the ear. Several of the small molecules identified allowed us to dissect the logic of melanocyte and otolith development and to identify critical periods for these events. Small molecules identified in this way offer potential to dissect further these and other developmental processes and to identify novel genes involved in vertebrate development.
Resumo:
Enzymes participating in different metabolic pathways often have similar catalytic mechanisms and structures, suggesting their evolution from a common ancestral precursor enzyme. We sought to create a precursor-like enzyme for N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24), which catalyze similar reactions in the biosynthesis of the amino acids histidine and tryptophan and have a similar (βα)8-barrel structure. Using random mutagenesis and selection, we generated several HisA variants that catalyze the TrpF reaction both in vivo and in vitro, and one of these variants retained significant HisA activity. A more detailed analysis revealed that a single amino acid exchange could establish TrpF activity on the HisA scaffold. These findings suggest that HisA and TrpF may have evolved from an ancestral enzyme of broader substrate specificity and underscore that (βα)8-barrel enzymes are very suitable for the design of new catalytic activities.
Resumo:
The zebrafish system offers many unique opportunities for the study of molecular biology. To date, only random mutagenesis, and not directed gene knockouts, have been demonstrated in this system. To more fully develop the potential of the zebrafish system, an approach to effectively inhibit the expression of any targeted gene in the developing zebrafish embryo has been developed. This approach uses a transient, cytoplasmic, T7 expression system, injected into the fertilized zebrafish egg to rapidly produce high levels of a ribozyme directed against the mRNA encoded by the targeted gene to inhibit its expression. In a demonstration of this strategy, expression of the recessive dominant zebrafish no tail gene was effectively inhibited by using this strategy to yield a phenotype identical to that resulting from a known defective mutation in this same gene. This, ribozyme-mediated, message deletion strategy may have use in determining the function of genetic coding sequences of unknown function.
Resumo:
ADP-ribosylation factors, a family of small GTPases, are believed to be key regulators of intracellular membrane traffic. However, many biochemical in vitro experiments have led to different models for their involvement in various steps of vesicular transport, and their precise role in living cells is still unclear. We have taken advantage of the powerful yeast genetic system and screened for temperature-sensitive (ts) mutants of the ARF1 gene from Saccharomyces cerevisiae. By random mutagenesis of the whole open reading frame of ARF1 by error-prone PCR, we isolated eight mutants and examined their phenotypes. arf1 ts mutants showed a variety of transport defects and morphological alterations in an allele-specific manner. Furthermore, intragenic complementation was observed between certain pairs of mutant alleles, both for cell growth and intracellular transport. These results demonstrate that the single Arf1 protein is indeed involved in many different steps of intracellular transport in vivo and that its multiple roles may be dissected by the mutant alleles we constructed.
Resumo:
We devised a noninvasive genetic selection strategy to identify positive regulators of bacterial virulence genes during actual infection of an intact animal host. This strategy combines random mutagenesis with a switch-like reporter of transcription that confers antibiotic resistance in the off state and sensitivity in the on state. Application of this technology to the human intestinal pathogen Vibrio cholerae identified several regulators of cholera toxin and a central virulence gene regulator that are operative during infection. These regulators function in chemotaxis, signaling pathways, transport across the cell envelope, biosynthesis, and adherence. We show that phenotypes that appear genetically independent in cell culture become interrelated in the host milieu.
Resumo:
Mutations at position 912 of Escherichia coli 16S rRNA result in two notable phenotypes. The C-->U transition confers resistance to streptomycin, a translational-error-inducing antibiotic, while a C-->G transversion causes marked retardation of cell growth rate. Starting with the slow-growing G912 mutant, random mutagenesis was used to isolate a second site mutation that restored growth nearly to the wild-type rate. The second site mutation was identified as a G-->C transversion at position 885 in 16S rRNA. Cells containing the G912 mutation had an increased doubling time, abnormal sucrose gradient ribosome/subunit profile, increased sensitivity to spectinomycin, dependence upon streptomycin for growth in the presence of spectinomycin, and slower translation rate, whereas cells with the G912/C885 double mutation were similar to wild type in these assays. Comparative analysis showed there was significant covariation between positions 912 and 885. Thus the second-site suppressor analysis, the functional assays, and the comparative data suggest that the interaction between nt 912 and nt 885 is conserved and necessary for normal ribosome function. Furthermore, the comparative data suggest that the interaction extends to include G885-G886-G887 pairing with C912-U911-C910. An alternative secondary structure element for the central domain of 16S rRNA is proposed.
Resumo:
Glutathione S-transferases (EC 2.5.1.18) in mammalian cells catalyze the conjugation, and thus, the detoxication of a structurally diverse group of electrophilic environmental carcinogens and alkylating drugs, including the antineoplastic nitrogen mustards. We proposed that structural alteration of the nonspecific electrophile-binding site would produce mutant enzymes with increased efficiency for detoxication of a single drug and that these mutants could serve as useful somatic transgenes to protect healthy human cells against single alkylating agents used in cancer chemotherapy protocols. Random mutagenesis of three regions (residues 9-14, 102-112, and 210-220), which together compose the glutathione S-transferase electrophile-binding site, followed by selection of Escherichia coli expressing the enzyme library with the nitrogen mustard mechlorethamine (20-500 microM), yielded mutant enzymes that showed significant improvement in catalytic efficiency for mechlorethamine conjugation (up to 15-fold increase in kcat and up to 6-fold increase in kcat/Km) and that confer up to 31-fold resistance, which is 9-fold greater drug resistance than that conferred by the wild-type enzyme. The results suggest a general strategy for modification of drug- and carcinogen-metabolizing enzymes to achieve desired resistance in both prokaryotic and eukaryotic plant and animal cells.
Resumo:
Multiple lipoxygenase sequence alignments and structural modeling of the enzyme/substrate interaction of the cucumber lipid body lipoxygenase suggested histidine 608 as the primary determinant of positional specificity. Replacement of this amino acid by a less-space-filling valine altered the positional specificity of this linoleate 13-lipoxygenase in favor of 9-lipoxygenation. These alterations may be explained by the fact that H608V mutation may demask the positively charged guanidino group of R758, which, in turn, may force an inverse head-to-tail orientation of the fatty acid substrate. The R758L+H608V double mutant exhibited a strongly reduced reaction rate and a random positional specificity. Trilinolein, which lacks free carboxylic groups, was oxygenated to the corresponding (13S)-hydro(pero)xy derivatives by both the wild-type enzyme and the linoleate 9-lipoxygenating H608V mutant. These data indicate the complete conversion of a linoleate 13-lipoxygenase to a 9-lipoxygenating species by a single point mutation. It is hypothesized that H608V exchange may alter the orientation of the substrate at the active site and/or its steric configuration in such a way that a stereospecific dioxygen insertion at C-9 may exclusively take place.
Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria.
Resumo:
DNA repair alkyltransferases protect organisms against the cytotoxic, mutagenic, and carcinogenic effects of alkylating agents by transferring alkyl adducts from DNA to an active cysteine on the protein, thereby restoring the native DNA structure. We used random sequence substitutions to gain structure-function information about the human O6-methylguanine-DNA methyltransferase (EC 2.1.1.63), as well as to create active mutants. Twelve codons surrounding but not including the active cysteine were replaced by a random nucleotide sequence, and the resulting random library was selected for the ability to provide alkyltransferase-deficient Escherichia coli with resistance to the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Few amino acid changes were tolerated in this evolutionarily conserved region of the protein. One mutation, a valine to phenylalanine change at codon 139 (V139F), was found in 70% of the selected mutants; in fact, this mutant was selected much more frequently than the wild type. V139F provided alkyltransferase-deficient bacteria with greater protection than the wild-type protein against both the cytotoxic and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine, increasing the D37 over 4-fold and reducing the mutagenesis rate 2.7-5.5-fold. This mutant human alkyltransferase, or others similarly created and selected, could be used to protect bone marrow cells from the cytotoxic side effects of alkylation-based chemotherapeutic regimens.