16 resultados para nonstationary birth and death processes
Resumo:
Ubiquitin is a highly conserved protein that is encoded by a multigene family. It is generally believed that this gene family is subject to concerted evolution, which homogenizes the member genes of the family. However, protein homogeneity can be attained also by strong purifying selection. We therefore studied the proportion (pS) of synonymous nucleotide differences between members of the ubiquitin gene family from 28 species of fungi, plants, and animals. The results have shown that pS is generally very high and is often close to the saturation level, although the protein sequence is virtually identical for all ubiquitins from fungi, plants, and animals. A small proportion of species showed a low level of pS values, but these values appeared to be caused by recent gene duplication. It was also found that the number of repeat copies of the gene family varies considerably with species, and some species harbor pseudogenes. These observations suggest that the members of this gene family evolve almost independently by silent nucleotide substitution and are subjected to birth-and-death evolution at the DNA level.
Resumo:
Concerted evolution is often invoked to explain the diversity and evolution of the multigene families of major histocompatibility complex (MHC) genes and immunoglobulin (Ig) genes. However, this hypothesis has been controversial because the member genes of these families from the same species are not necessarily more closely related to one another than to the genes from different species. To resolve this controversy, we conducted phylogenetic analyses of several multigene families of the MHC and Ig systems. The results show that the evolutionary pattern of these families is quite different from that of concerted evolution but is in agreement with the birth-and-death model of evolution in which new genes are created by repeated gene duplication and some duplicate genes are maintained in the genome for a long time but others are deleted or become nonfunctional by deleterious mutations. We found little evidence that interlocus gene conversion plays an important role in the evolution of MHC and Ig multigene families.
Resumo:
Death-associated protein kinase (DAP-kinase) is a Ca+2/calmodulin-regulated serine/threonine kinase with a multidomain structure that participates in apoptosis induced by a variety of signals. To identify regions in this protein that are critical for its proapoptotic activity, we performed a genetic screen on the basis of functional selection of short DAP-kinase-derived fragments that could protect cells from apoptosis by acting in a dominant-negative manner. We expressed a library of randomly fragmented DAP-kinase cDNA in HeLa cells and treated these cells with IFN-γ to induce apoptosis. Functional cDNA fragments were recovered from cells that survived the selection, and those in the sense orientation were examined further in a secondary screen for their ability to protect cells from DAP-kinase-dependent tumor necrosis factor-α-induced apoptosis. We isolated four biologically active peptides that mapped to the ankyrin repeats, the “linker” region, the death domain, and the C-terminal tail of DAP-kinase. Molecular modeling of the complete death domain provided a structural basis for the function of the death-domain-derived fragment by suggesting that the protective fragment constitutes a distinct substructure. The last fragment, spanning the C-terminal serine-rich tail, defined a new regulatory region. Ectopic expression of the tail peptide (17 amino acids) inhibited the function of DAP-kinase, whereas removal of this region from the complete protein caused enhancement of the killing activity, indicating that the C-terminal tail normally plays a negative regulatory role. Altogether, this unbiased screen highlighted functionally important regions in the protein and revealed an additional level of regulation of DAP-kinase apoptotic function that does not affect the catalytic activity.
Fas (CD95) expression and death-mediating function are induced by CD4 cross-linking on CD4+ T cells.
Resumo:
The CD4 receptor contributes to T-cell activation by coligating major histocompatibility complex class II on antigen presenting cells with the T-cell receptor (TCR)/CD3 complex, and triggering a cascade of signaling events including tyrosine phosphorylation of intracellular proteins. Paradoxically, CD3 cross-linking prior to TCR stimulation results in apoptotic cell death, as does injection of anti-CD4 antibodies in vivo of CD4 ligation by HIV glycoprotein (gp) 120. In this report we investigate the mechanism by which CD4 cross-linking induces cell death. We have found that CD4 cross-linking results in a small but rapid increase in levels of cell surface Fas, a member of the tumor necrosis factor receptor family implicated in apoptotic death and maintenance of immune homeostasis. Importantly, CD4 cross-linking triggered the ability of Fas to function as a death molecule. Subsequent to CD4 cross-linking, CD4+ splenocytes cultured overnight became sensitive to Fas-mediated death. Death was Fas-dependent, as demonstrated by cell survival in the absence of plate-bound anti-Fas antibody, and by the lack of CD4-induced death in cells from Fas-defective lymphoproliferative (lpr) mice. We demonstrate here that CD4 regulates the ability of Fas to induce cell death in Cd4+ T cells.
Resumo:
Regional cerebral blood flow was measured with positron-emission tomography during two encoding and two retrieval tasks that were designed to compare memory for object features with memory for object locations. Bilateral increases in regional cerebral blood flow were observed in both anterior and posterior regions of inferior temporal cortex and in ventral regions of prestriate cortex, when the condition that required retrieval of object locations was subtracted from the condition that required retrieval of object features. During encoding, these changes were less pronounced and were restricted to the left inferior temporal cortex and right ventral prestriate cortex. In contrast, both encoding and retrieval of object location were associated with bilateral changes in dorsal prestriate and posterior parietal cortex. Finally, the two encoding conditions activated left frontal lobe regions preferentially, whereas the two retrieval conditions activated right frontal lobe regions. These findings confirm that, in human subjects, memory for object features is mediated by a distributed system that includes ventral prestriate cortex and both anterior and posterior regions of the inferior temporal gyrus. In contrast, memory for the locations of objects appears to be mediated by an anatomically distinct system that includes more dorsal regions of prestriate cortex and posterior regions of the parietal lobe.
Resumo:
We present data on the decay, after radiotherapy, of naive and memory human T lymphocytes with stable chromosome damage. These data are analyzed in conjunction with existing data on the decay of naive and memory T lymphocytes with unstable chromosome damage and older data on unsorted lymphocytes. The analyses yield in vivo estimates for some life-history parameters of human T lymphocytes. Best estimates of proliferation rates have naive lymphocytes dividing once every 3.5 years and memory lymphocytes dividing once every 22 weeks. It appears that memory lymphocytes can revert to the naive phenotype, but only, on average, after 3.5 years in the memory class. The lymphocytes with stable chromosome damage decay very slowly, yielding surprisingly low estimates of their death rate. The estimated parameters are used in a simple mathematical model of the population dynamics of undamaged naive and memory lymphocytes. We use this model to illustrate that it is possible for the unprimed subset of a constantly stimulated clone to stay small, even when there is a large population of specific primed cells reverting to the unprimed state.
Resumo:
The intensely studied MHC has become the paradigm for understanding the architectural evolution of vertebrate multigene families. The 4-Mb human MHC (also known as the HLA complex) encodes genes critically involved in the immune response, graft rejection, and disease susceptibility. Here we report the continuous 1,796,938-bp genomic sequence of the HLA class I region, linking genes between MICB and HLA-F. A total of 127 genes or potentially coding sequences were recognized within the analyzed sequence, establishing a high gene density of one per every 14.1 kb. The identification of 758 microsatellite provides tools for high-resolution mapping of HLA class I-associated disease genes. Most importantly, we establish that the repeated duplication and subsequent diversification of a minimal building block, MIC-HCGIX-3.8–1-P5-HCGIV-HLA class I-HCGII, engendered the present-day MHC. That the currently nonessential HLA-F and MICE genes have acted as progenitors to today’s immune-competent HLA-ABC and MICA/B genes provides experimental evidence for evolution by “birth and death,” which has general relevance to our understanding of the evolutionary forces driving vertebrate multigene families.
Resumo:
Objectives: To investigate the relation between the timing of birth and the occurrence of death related to an intrapartum event.
Resumo:
Mutant alleles at the dilute unconventional myosin heavy chain locus cause diluted coat color, opisthotonic seizures, and death. The dilute coat color phenotype is caused by irregular clumping of pigment in the hair, but amounts of melanin are unchanged from wild-type controls. The melanocyte phenotype has been described as adendritic, since hair bulb and Harderian gland melanocytes appear to be rounded in tissue sections. These observations do not exclude the possibility that the processes lack pigment, since the melanocyte shape was judged by the distribution of melanin. We have tested this hypothesis by culturing primary melanocytes from dilute mutant and wild-type mice. The mutant melanocytes do not lack processes; instead, they exhibit a concentrated perinuclear distribution of melanosomes, while wild-type melanocytes have a very uniform cytoplasmic distribution of melanosomes. Electron micrographs show no detectable differences in melanosome morphology or maturation between dilute and wild-type melanocytes. Immunofluorescence experiments indicate that the dilute protein is concentrated in regions of the cytoplasm that contain melanosomes. These experiments show that the dilute myosin is necessary for the localization of melanosomes, either by active transport or tethering.
Resumo:
Chaperone rings play a vital role in the opposing ATP-mediated processes of folding and degradation of many cellular proteins, but the mechanisms by which they assist these life and death actions are only beginning to be understood. Ring structures present an advantage to both processes, providing for compartmentalization of the substrate protein inside a central cavity in which multivalent, potentially cooperative interactions can take place between the substrate and a high local concentration of binding sites, while access of other proteins to the cavity is restricted sterically. Such restriction prevents outside interference that could lead to nonproductive fates of the substrate protein while it is present in non-native form, such as aggregation. At the step of recognition, chaperone rings recognize different motifs in their substrates, exposed hydrophobicity in the case of protein-folding chaperonins, and specific “tag” sequences in at least some cases of the proteolytic chaperones. For both folding and proteolytic complexes, ATP directs conformational changes in the chaperone rings that govern release of the bound polypeptide. In the case of chaperonins, ATP enables a released protein to pursue the native state in a sequestered hydrophilic folding chamber, and, in the case of the proteases, the released polypeptide is translocated into a degradation chamber. These divergent fates are at least partly governed by very different cooperating components that associate with the chaperone rings: that is, cochaperonin rings on one hand and proteolytic ring assemblies on the other. Here we review the structures and mechanisms of the two types of chaperone ring system.
Resumo:
Serine proteases of the chymotrypsin fold are of great interest because they provide detailed understanding of their enzymatic properties and their proposed role in a number of physiological and pathological processes. We have been developing the macromolecular inhibitor ecotin to be a “fold-specific” inhibitor that is selective for members of the chymotrypsin-fold class of proteases. Inhibition of protease activity through the use of wild-type and engineered ecotins results in inhibition of rat prostate differentiation and retardation of the growth of human PC-3 prostatic cancer tumors. In an effort to identify the proteases that may be involved in these processes, reverse transcription–PCR with PC-3 poly(A)+ mRNA was performed by using degenerate oligonucleotide primers. These primers were designed by using conserved protein sequences unique to chymotrypsin-fold serine proteases. Five proteases were identified: urokinase-type plasminogen activator, factor XII, protein C, trypsinogen IV, and a protease that we refer to as membrane-type serine protease 1 (MT-SP1). The cloning and characterization of the MT-SP1 cDNA shows that it encodes a mosaic protein that contains a transmembrane signal anchor, two CUB domains, four LDLR repeats, and a serine protease domain. Northern blotting shows broad expression of MT-SP1 in a variety of epithelial tissues with high levels of expression in the human gastrointestinal tract and the prostate. A His-tagged fusion of the MT-SP1 protease domain was expressed in Escherichia coli, purified, and autoactivated. Ecotin and variant ecotins are subnanomolar inhibitors of the MT-SP1 activated protease domain, suggesting a possible role for MT-SP1 in prostate differentiation and the growth of prostatic carcinomas.
Resumo:
Tumors result from disruptions in the homeostatic mechanisms that regulate cell birth and cell death. In colon cancer, one of the earliest manifestation of this imbalance is the formation of polyps, caused by somatic and inherited mutations of the adenomatous polyposis coli (APC) tumor suppressor gene in both humans and mice. While the importance of APC in tumorigenesis is well documented, how it functions to prevent tumors remains a mystery. Using a novel inducible expression system, we show that expression of APC in human colorectal cancer cells containing endogenous inactive APC alleles results in a substantial diminution of cell growth. Further evaluation demonstrated that this was due to the induction of cell death through apoptosis. These results suggest that apoptosis plays a role not only in advanced tumors but also at the very earliest stages of neoplasia.
Resumo:
Hematopoiesis gives rise to blood cells of different lineages throughout normal life. Abnormalities in this developmental program lead to blood cell diseases including leukemia. The establishment of a cell culture system for the clonal development of hematopoietic cells made it possible to discover proteins that regulate cell viability, multiplication and differentiation of different hematopoietic cell lineages, and the molecular basis of normal and abnormal blood cell development. These regulators include cytokines now called colony-stimulating factors (CSFs) and interleukins (ILs). There is a network of cytokine interactions, which has positive regulators such as CSFs and ILs and negative regulators such as transforming growth factor beta and tumor necrosis factor (TNF). This multigene cytokine network provides flexibility depending on which part of the network is activated and allows amplification of response to a particular stimulus. Malignancy can be suppressed in certain types of leukemic cells by inducing differentiation with cytokines that regulate normal hematopoiesis or with other compounds that use alternative differentiation pathways. This created the basis for the clinical use of differentiation therapy. The suppression of malignancy by inducing differentiation can bypass genetic abnormalities that give rise to malignancy. Different CSFs and ILs suppress programmed cell death (apoptosis) and induce cell multiplication and differentiation, and these processes of development are separately regulated. The same cytokines suppress apoptosis in normal and leukemic cells, including apoptosis induced by irradiation and cytotoxic cancer chemotherapeutic compounds. An excess of cytokines can increase leukemic cell resistance to cytotoxic therapy. The tumor suppressor gene wild-type p53 induces apoptosis that can also be suppressed by cytokines. The oncogene mutant p53 suppresses apoptosis. Hematopoietic cytokines such as granulocyte CSF are now used clinically to correct defects in hematopoiesis, including repair of chemotherapy-associated suppression of normal hematopoiesis in cancer patients, stimulation of normal granulocyte development in patients with infantile congenital agranulocytosis, and increase of hematopoietic precursors for blood cell transplantation. Treatments that decrease the level of apoptosis-suppressing cytokines and downregulate expression of mutant p53 and other apoptosis suppressing genes in cancer cells could improve cytotoxic cancer therapy. The basic studies on hematopoiesis and leukemia have thus provided new approaches to therapy.