162 resultados para multidrug resistance associated protein 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Saccharomyces cerevisiae strain with a disrupted yeast cadmium resistance factor (YCF1) gene (DTY168) is hypersensitive to cadmium. YCF1 resembles the human multidrug resistance-associated protein MRP (63% amino acid similarity), which confers resistance to various cytotoxic drugs by lowering the intracellular drug concentration. Whereas the mechanism of action of YCF1 is not known, MRP was recently found to transport glutathione S-conjugates across membranes. Here we show that expression of the human MRP cDNA in yeast mutant DTY168 cells restores cadmium resistance to the wild-type level. Transport of S-(2,4-dinitrobenzene)-glutathione into isolated yeast microsomal vesicles is strongly reduced in the DTY168 mutant and this transport is restored to wild-type level in mutant cells expressing MRP cDNA. We find in cell fractionation experiments that YCF1 is mainly localized in the vacuolar membrane in yeast, whereas MRP is associated both with the vacuolar membrane and with other internal membranes in the transformed yeast cells. Our results indicate that yeast YCF1 is a glutathione S-conjugate pump, like MRP, and they raise the possibility that the cadmium resistance in yeast involves cotransport of cadmium with glutathione derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug-resistance-associated protein (MRP) is a plasma membrane glycoprotein that can confer multidrug resistance (MDR) by lowering intracellular drug concentration. Here we demonstrate that depletion of intracellular glutathione by DL-buthionine (S,R)-sulfoximine results in a complete reversal of resistance to doxorubicin, daunorubicin, vincristine, and VP-16 in lung carcinoma cells transfected with a MRP cDNA expression vector. Glutathione depletion had less effect on MDR in cells transfected with MDR1 cDNA encoding P-glycoprotein and did not increase the passive uptake of daunorubicin by cells, indicating that the decrease of MRP-mediated MDR was not due to nonspecific membrane damage. Glutathione depletion resulted in a decreased efflux of daunorubicin from MRP-transfected cells, but not from MDR1-transfected cells, suggesting that glutathione is specifically required for the export of drugs from cells by MRP. We also show that MRP increases the export of glutathione from the cell and this increased export is further elevated in the presence of arsenite. Our results support the hypothesis that MRP functions as a glutathione S-conjugate carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about plant circadian oscillators, in spite of how important they are to sessile plants, which require accurate timekeepers that enable the plants to respond to their environment. Previously, we identified a circadian clock-associated (CCA1) gene that encodes an Myb-related protein that is associated with phytochrome control and circadian regulation in plants. To understand the role CCA1 plays in phytochrome and circadian regulation, we have isolated an Arabidopsis line with a T DNA insertion that results in the loss of CCA1 RNA, of CCA1 protein, and of an Lhcb-promoter binding activity. This mutation affects the circadian expression of all four clock-controlled genes that we examined. The results show that, despite their similarity, CCA1 and LHY are only partially redundant. The lack of CCA1 also affects the phytochrome regulation of gene expression, suggesting that CCA1 has an additional role in a signal transduction pathway from light, possibly acting at the point of integration between phytochrome and the clock. Our results indicate that CCA1 is an important clock-associated protein involved in circadian regulation of gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epstein–Barr virus encodes integral membrane proteins LMP1 and LMP2A in transformed lymphoblastoid cell lines. We now find that LMP1 associates with the cell cytoskeleton through a tumor necrosis factor receptor-associated factor-interacting domain, most likely mediated by tumor necrosis factor receptor-associated factor 3. LMP1 is palmitoylated, and the transmembrane domains associate with lipid rafts. Mutation of LMP1 cysteine-78 abrogates palmitoylation but does not affect raft association or NF-κB or c-Jun N-terminal kinase activation. LMP2A also associates with rafts and is palmitoylated but does not associate with the cell cytoskeleton. The associations of LMP1 and LMP2A with rafts and of LMP1 with the cell cytoskeleton are likely to effect interactions with cell proteins involved in shape, motility, signal transduction, growth, and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-regulated, cAMP-activated chloride channel located in the apical membrane of many epithelial secretory cells. Here we report cloning of a cAMP-activated epithelial basolateral chloride conductance regulator (EBCR) that appears to be a basolateral CFTR counterpart. This novel chloride channel or regulator shows 49% identity with multidrug resistance-associated protein (MRP) and 29% identity with CFTR. On expression in Xenopus oocytes, EBCR confers a cAMP-activated chloride conductance that is inhibited by the chloride channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamine)benzoic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Northern blot analysis reveals high expression in small intestine, kidney, and liver. In kidney, immunohistochemistry shows a conspicuous basolateral localization mainly in the thick ascending limb of Henle's loop, distal convoluted tubules and to a lesser extent connecting tubules. These data suggest that in the kidney EBCR is involved in hormone-regulated chloride reabsorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈20-kDa C-terminal fragments (CTF) and ≈30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Screening of a library derived from primary human endothelial cells revealed a novel human isoform of vesicle-associated membrane protein-1 (VAMP-1), a protein involved in the targeting and/or fusion of transport vesicles to their target membrane. We have termed this novel isoform VAMP-1B and designated the previously described isoform VAMP-1A. VAMP-1B appears to be an alternatively spliced form of VAMP-1. A similar rat splice variant of VAMP-1 (also termed VAMP-1B) has recently been reported. Five different cultured cell lines, from different lineages, all contained VAMP-1B but little or no detectable VAMP-1A mRNA, as assessed by PCR. In contrast, brain mRNA contained VAMP-1A but no VAMP-1B. The VAMP-1B sequence encodes a protein identical to VAMP-1A except for the carboxy-terminal five amino acids. VAMP-1 is anchored in the vesicle membrane by a carboxy-terminal hydrophobic sequence. In VAMP-1A the hydrophobic anchor is followed by a single threonine, which is the carboxy-terminal amino acid. In VAMP-1B the predicted hydrophobic membrane anchor is shortened by four amino acids, and the hydrophobic sequence is immediately followed by three charged amino acids, arginine-arginine-aspartic acid. Transfection of human endothelial cells with epitope-tagged VAMP-1B demonstrated that VAMP-1B was targeted to mitochondria whereas VAMP-1A was localized to the plasma membrane and endosome-like structures. Analysis of C-terminal mutations of VAMP-1B demonstrated that mitochondrial targeting depends both on the addition of positive charge at the C terminus and a shortened hydrophobic membrane anchor. These data suggest that mitochondria may be integrated, at least at a mechanistic level, to the vesicular trafficking pathways that govern protein movement between other organelles of the cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson's disease is a common neurodegenerative disorder in which familial-linked genes have provided novel insights into the pathogenesis of this disorder. Mutations in Parkin, a ring-finger-containing protein of unknown function, are implicated in the pathogenesis of autosomal recessive familial Parkinson's disease. Here, we show that Parkin binds to the E2 ubiquitin-conjugating human enzyme 8 (UbcH8) through its C-terminal ring-finger. Parkin has ubiquitin–protein ligase activity in the presence of UbcH8. Parkin also ubiquitinates itself and promotes its own degradation. We also identify and show that the synaptic vesicle-associated protein, CDCrel-1, interacts with Parkin through its ring-finger domains. Furthermore, Parkin ubiquitinates and promotes the degradation of CDCrel-1. Familial-linked mutations disrupt the ubiquitin–protein ligase function of Parkin and impair Parkin and CDCrel-1 degradation. These results suggest that Parkin functions as an E3 ubiquitin–protein ligase through its ring domains and that it may control protein levels via ubiquitination. The loss of Parkin's ubiquitin–protein ligase function in familial-linked mutations suggests that this may be the cause of familial autosomal recessive Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The junction-associated protein zonula occludens-1 (ZO-1) is a member of a family of membrane-associated guanylate kinase homologues thought to be important in signal transduction at sites of cell-cell contact. We present evidence that under certain conditions of cell growth, ZO-1 can be detected in the nucleus. Two different antibodies against distinct portions of the ZO-1 polypeptide reveal nuclear staining in subconfluent, but not confluent, cell cultures. An exogenously expressed, epitope-tagged ZO-1 can also be detected in the nuclei of transfected cells. Nuclear accumulation can be stimulated at sites of wounding in cultured epithelial cells, and immunoperoxidase detection of ZO-1 in tissue sections of intestinal epithelial cells reveals nuclear labeling only along the outer tip of the villus. These results suggest that the nuclear localization of ZO-1 is inversely related to the extent and/or maturity of cell contact. Since cell-cell contacts are specialized sites for signaling pathways implicated in growth and differentiation, we suggest that the nuclear accumulation of ZO-1 may be relevant for its suggested role in membrane-associated guanylate kinase homologue signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent infection membrane protein 1 (LMP1), the Epstein-Barr virus transforming protein, associates with tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) and TRAF3. Since TRAF2 has been implicated in TNFR-mediated NF-kappa B activation, we have evaluated the role of TRAF2 in LMP1-mediated NF-kappa B activation. TRAF2 binds in vitro to the LMP1 carboxyl-terminal cytoplasmic domain (CT), coprecipitates with LMP1 in B lymphoblasts, and relocalizes to LMP1 plasma membrane patches. A dominant negative TRAF2 deletion mutant that lacks amino acids 6-86 (TRAF/ delta 6-86) inhibits NF-kappa B activation from the LMP1 CT and competes with TRAF2 for LMP1 binding. TRAF2 delta 6-86 inhibits NF-kappa B activation mediated by the first 45 amino acids of the LMP1 CT by more than 75% but inhibits NF-kappa B activation through the last 55 amino acids of the CT by less than 40%. A TRAF interacting protein, TANK, inhibits NF-kappa B activation by more than 70% from both LMP1 CT domains. These data implicate TRAF2 aggregation in NF-kappa B activation by the first 45 amino acids of the LMP1 CT and suggest that a different TRAF-related pathway may be involved in NF-kappa B activation by the last 55 amino acids of the LMP1 CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal plasticity plays a very important role in brain adaptations to environmental stimuli, disease, and aging processes. The kainic acid model of temporal lobe epilepsy was used to study the long-term anatomical and biochemical changes in the hippocampus after seizures. Using Northern blot analysis, immunocytochemistry, and Western blot analysis, we have found a long-term elevation of the proconvulsive opioid peptide, enkephalin, in the rat hippocampus. We have also demonstrated that an activator protein-1 transcription factor, the 35-kDa fos-related antigen, can be induced and elevated for at least 1 year after kainate treatment. This study demonstrated that a single systemic injection of kainate produces almost permanent increases in the enkephalin and an activator protein-1 transcription factor, the 35-kDa fos-related antigen, in the rat hippocampus, and it is likely that these two events are closely associated with the molecular mechanisms of induction of long-lasting enhanced seizure susceptibility in the kainate-induced seizure model. The long-term expression of the proenkephalin mRNA and its peptides in the kainate-treated rat hippocampus also suggests an important role in the recurrent seizures of temporal lobe epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nerve growth factor (NGF) prevents apoptosis through stimulation of the TrkA receptor protein tyrosine kinase. The downstream activation of phosphatidylinositol 3-kinase (PI 3-kinase) is essential for the inhibition of apoptosis, although this enzyme does not bind to and is not directly activated by TrkA. We have found that the addition of NGF to PC-12 cells resulted in the phosphorylation of the Grb2-associated binder-1 (Gab1) docking protein and induced the association of several SH2 domain-containing proteins, including PI 3-kinase. A substantial fraction of the total cellular PI 3-kinase activity was associated with Gab1. PC-12 cells that overexpressed Gab1 show a decreased requirement for the amount of NGF necessary to inhibit apoptosis. The expression of a Gab1 mutant that lacked the binding sites for PI 3-kinase enhanced apoptosis and diminished the protective effect of NGF. Hence, Gab1 has a major role in connecting TrkA with PI 3-kinase activation and for the promotion of cell survival by NGF.