101 resultados para labdane dimers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson–Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic excitations of naphthalene and a family of bridged naphthalene dimers are calculated and analyzed by using the Collective Electronic Oscillator method combined with the oblique Lanczos algorithm. All experimentally observed trends in absorption profiles and radiative lifetimes are reproduced. Each electronic excitation is linked to the corresponding real-space transition density matrix, which represents the motions of electrons and holes created in the molecule by photon absorption. Two-dimensional plots of these matrices help visualize the degree of exciton localization and explain the dependence of the electronic interaction between chromophores on their separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposing skin to UVB (280–320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase (Photosomes; Applied Genetics, Freeport, NY), which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosome treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320–400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Gαq (the m3 muscarinic receptor), Gαi (the κ-opioid receptor), and Gαs (the β-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Gαi, but not to Gαq or Gαs, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Gα transducin, which binds to and inactivates free Gβγ dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gβγ dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Gαi and the release of Gβγ dimers, and that Gαi-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-Cyclodextrin (CD) dimers (n = 11) were synthesized and tested against eight enzymes, seven of which were dimeric or tetrameric, for inhibitor activity. Initial screening showed that only l-lactate dehydrogenase and citrate synthase were inhibited but only by two specific CD dimers in which two β-CDs were linked on the secondary face by a pyridine-2,6-dicarboxylic group. Further investigation suggested that these CD dimers inhibit the activity of l-lactate dehydrogenase and citrate synthase at least in part by disruption of protein–protein aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of human endostatin reveals a zinc-binding site. Atomic absorption spectroscopy indicates that zinc is a constituent of both human and murine endostatin in solution. The human endostatin zinc site is formed by three histidines at the N terminus, residues 1, 3, and, 11, and an aspartic acid at residue 76. The N-terminal loop ordered around the zinc makes a dimeric contact in human endostatin crystals. The location of the zinc site at the amino terminus, immediately adjacent to the precursor cleavage site, suggests the possibility that the zinc may be involved in activation of the antiangiogenic activity following cleavage from the inactive collagen XVIII precursor or in the cleavage process itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) domain-swapped proteins are intermolecularly folded analogs of monomeric proteins; both are stabilized by the identical interactions, but the individual domains interact intramolecularly in monomeric proteins, whereas they form intermolecular interactions in 3D domain-swapped structures. The structures and conditions of formation of several domain-swapped dimers and trimers are known, but the formation of higher order 3D domain-swapped oligomers has been less thoroughly studied. Here we contrast the structural consequences of domain swapping from two designed three-helix bundles: one with an up-down-up topology, and the other with an up-down-down topology. The up-down-up topology gives rise to a domain-swapped dimer whose structure has been determined to 1.5 Å resolution by x-ray crystallography. In contrast, the domain-swapped protein with an up-down-down topology forms fibrils as shown by electron microscopy and dynamic light scattering. This demonstrates that design principles can predict the oligomeric state of 3D domain-swapped molecules, which should aid in the design of domain-swapped proteins and biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xanthene dyes are known to form dimers with spectral characteristics that have been interpreted in terms of exciton theory. A unique aspect of H-type dimers is the fluorescence quenching that accompanies their formation. Using the principles of exciton theory as a guide, a series of protease substrates was synthesized with a xanthene dye on each side of the cleavage site. To bring the attached dyes into spatial proximity to form a dimer, the molecular design included structure determinant regions in the amino acid sequence. In addition, chromophores were chosen such that changes in absorption spectra indicative of exciton splitting were anticipated. Cleavage of the peptides by a protease resulted in disruption of the dimers and indeed significant absorption spectral changes were observed. Furthermore, substrate cleavage was accompanied by at least an order of magnitude increase in fluorescence intensity. This has allowed determination of intracellular elastase activity using a fluorescence microscope equipped with standard optics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During protein synthesis, the two elongation factors Tu and G alternately bind to the 50S ribosomal subunit at a site of which the protein L7/L12 is an essential component. L7/L12 is present in each 50S subunit in four copies organized as two dimers. Each dimer consists of distinct domains: a single N-terminal (“tail”) domain that is responsible for both dimerization and binding to the ribosome via interaction with the protein L10 and two independent globular C-terminal domains (“heads”) that are required for binding of elongation factors to ribosomes. The two heads are connected by flexible hinge sequences to the N-terminal domain. Important questions concerning the mechanism by which L7/L12 interacts with elongation factors are posed by us in response to the presence of two dimers, two heads per dimer, and their dynamic, mobile properties. In an attempt to answer these questions, we constructed a single-headed dimer of L7/L12 by using recombinant DNA techniques and chemical cross-linking. This chimeric molecule was added to inactive core particles lacking wild-type L7/L12 and shown to restore activity to a level approaching that of wild-type two-headed L7/L12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inducible nitric oxide synthase (iNOS) contains an amino-terminal oxygenase domain, a carboxy-terminal reductase domain, and an intervening calmodulin-binding region. For the synthesis of nitric oxide (NO), iNOS is active as a homodimer. The human iNOS mRNA is subject to alternative splicing, including deletion of exons 8 and 9 that encode amino acids 242–335 of the oxygenase domain. In this study, iNOS8−9− and full-length iNOS (iNOSFL) were cloned from bronchial epithelial cells. Expression of iNOS8−9− in 293 cell line resulted in generation of iNOS8−9− mRNA and protein but did not lead to NO production. In contrast to iNOSFL, iNOS8−9− did not form dimers. Similar to iNOSFL, iNOS8−9− exhibited NADPH-diaphorase activity and contained tightly bound calmodulin, indicating that the reductase and calmodulin-binding domains were functional. To identify sequences in exons 8 and 9 that are critical for dimerization, iNOSFL was used to construct 12 mutants, each with deletion of eight residues in the region encoded by exons 8 and 9. In addition, two “control” iNOS deletion mutants were synthesized, lacking either residues 45–52 of the oxygenase domain or residues 1131–1138 of the reductase domain. Whereas both control deletion mutants generated NO and formed dimers, none of the 12 other mutants formed dimers or generated NO. The region encoded by exons 8 and 9 is critical for iNOS dimer formation and NO production but not for reductase activity. This region could be a potential target for therapeutic interventions aimed at inhibiting iNOS dimerization and hence NO synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capsid protein of hepatitis B virus, consisting of an “assembly” domain (residues 1–149) and an RNA-binding “protamine” domain (residues 150–183), assembles from dimers into icosahedral capsids of two different sizes. The C terminus of the assembly domain (residues 140–149) functions as a morphogenetic switch, longer C termini favoring a higher proportion of the larger capsids, it also connects the protamine domain to the capsid shell. We now have defined the location of this peptide in capsids assembled in vitro by engineering a mutant assembly domain with a single cysteine at its C terminus (residue 150), labeling it with a gold cluster and visualizing the cluster by cryo-electron microscopy. The labeled protein is unimpaired in its ability to form capsids. Our density map reveals a single undecagold cluster under each fivefold and quasi-sixfold vertex, connected to sites at either end of the undersides of the dimers. Considering the geometry of the vertices, the C termini must be more crowded at the fivefolds. Thus, a bulky C terminus would be expected to favor formation of the larger (T = 4) capsids, which have a greater proportion of quasi-sixfolds. Capsids assembled by expressing the full-length protein in Escherichia coli package bacterial RNAs in amounts equivalent to the viral pregenome. Our density map of these capsids reveals a distinct inner shell of density—the RNA. The RNA is connected to the protein shell via the C-terminal linkers and also makes contact around the dimer axes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20–30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the crystal structures of the copper and nickel complexes of RNase A. The overall topology of these two complexes is similar to that of other RNase A structures. However, there are significant differences in the mode of binding of copper and nickel. There are two copper ions per molecule of the protein, but there is only one nickel ion per molecule of the protein. Significant changes occur in the interprotein interactions as a result of differences in the coordinating groups at the common binding site around His-105. Consequently, the copper- and nickel-ion-bound dimers of RNase A act as nucleation sites for generating different crystal lattices for the two complexes. A second copper ion is present at an active site residue His-119 for which all the ligands are from one molecule of the protein. At this second site, His-119 adopts an inactive conformation (B) induced by the copper. We have identified a novel copper binding motif involving the α-amino group and the N-terminal residues.