31 resultados para hepatic lesions


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic fibrosis represents the generalized response of the liver to injury and is characterized by excessive deposition of extracellular matrix. The cellular basis of this process is complex and involves interplay of many factors, of which cytokines are prominent. We have identified divergent fibrosing responses to injury among mouse strains and taken advantage of these differences to examine and contrast T helper (Th)-derived cytokines during fibrogenesis. Liver injury was induced with carbon tetrachloride, fibrosis was quantitated, and Th1/Th2 cytokine mRNAs measured. Liver injury in BALB/c mice resulted in severe fibrosis, whereas C57BL/6 mice developed comparatively minimal fibrosis. Fibrogenesis was significantly modified in T and B cell-deficient BALB/c and C57BL/6 severe combined immunodeficient (SCID) mice compared with wild-type counterparts, suggesting a role of Th subsets. Fibrogenic BALB/c mice exhibited a Th2 response during the wounding response, whereas C57BL/6 mice displayed a Th1 response, suggesting that hepatic fibrosis is influenced by different T helper subsets. Moreover, mice lacking interferon γ, which default to the Th2 cytokine pathway, exhibited more pronounced fibrotic lesions than did wild-type animals. Finally, shifting of the Th2 response toward a Th1 response by treatment with neutralizing anti-interleukin 4 or with interferon γ itself ameliorated fibrosis in BALB/c mice. These data support a role for immune modulation of hepatic fibrosis and suggest that Th cytokine subsets can modulate the fibrotic response to injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have generated mice with markedly elevated plasma levels of human low density lipoprotein (LDL) and reduced plasma levels of high density lipoprotein. These mice have no functional LDL receptors [LDLR−/−] and express a human apolipoprotein B-100 (apoB) transgene [Tg(apoB+/+)] with or without an apo(a) transgene [Tg(apoa+/−)]. Twenty animals (10 males and 10 females) of each of the following four genotypes were maintained on a chow diet: (i) LDLR−/−, (ii) LDLR−/−;Tg(apoa+/−), (iii) LDLR−/−;Tg(apoB+/+), and (iv)LDLR−/−;Tg(apoB+/+);Tg(apo+/−). The mice were killed at 6 mo, and the percent area of the aortic intimal surface that stained positive for neutral lipid was quantified. Mean percent areas of lipid staining were not significantly different between the LDLR−/− and LDLR−/−;Tg(apoa+/−) mice (1.0 ± 0.2% vs. 1.4 ± 0.3%). However, the LDLR−/−;Tg(apoB+/+) mice had ≈15-fold greater mean lesion area than the LDLR−/− mice. No significant difference was found in percent lesion area in the LDLR−/−;Tg(apoB+/+) mice whether or not they expressed apo(a) [18.5 ± 2.5%, without lipoprotein(a), Lp(a), vs. 16.0 ± 1.7%, with Lp(a)]. Histochemical analyses of the sections from the proximal aorta of LDLR−/−;Tg(apoB+/+) mice revealed large, complex, lipid-laden atherosclerotic lesions that stained intensely with human apoB-100 antibodies. In mice expressing Lp(a), large amounts of apo(a) protein colocalized with apoB-100 in the lesions. We conclude that LDLR−/−; Tg(apoB+/+) mice exhibit accelerated atherosclerosis on a chow diet and thus provide an excellent animal model in which to study atherosclerosis. We found no evidence that apo(a) increased atherosclerosis in this animal model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scavenger receptor BI (SR-BI) is a cell surface receptor that binds high density lipoproteins (HDL) and mediates selective uptake of HDL cholesteryl esters (CE) in transfected cells. To address the physiological role of SR-BI in HDL cholesterol homeostasis, mice were generated bearing an SR-BI promoter mutation that resulted in decreased expression of the receptor in homozygous mutant (designated SR-BI att) mice. Hepatic expression of the receptor was reduced by 53% with a corresponding increase in total plasma cholesterol levels of 50–70% in SR-BI att mice, attributable almost exclusively to elevated plasma HDL. In addition to increased HDL-CE, HDL phospholipids and apo A-1 levels were elevated, and there was an increase in HDL particle size in mutant mice. Metabolic studies using HDL bearing nondegradable radiolabels in both the protein and lipid components demonstrated that reducing hepatic SR-BI expression by half was associated with a decrease of 47% in selective uptake of CE by the liver, and a corresponding reduction of 53% in selective removal of HDL-CE from plasma. Taken together, these findings strongly support a pivotal role for hepatic SR-BI expression in regulating plasma HDL levels and indicate that SR-BI is the major molecule mediating selective CE uptake by the liver. The inverse correlation between plasma HDL levels and atherosclerosis further suggests that SR-BI may influence the development of coronary artery disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell cycle inhibitor p21/WAF1/Cip1 is expressed in many cell types and is regulated by p53-dependent and p53-independent mechanisms. p21 is an important regulator of hepatocyte cell cycle, differentiation, and liver development, but little is known about the regulation of its synthesis in hepatocytes. We report herein that the p21 gene is constitutively expressed in human hepatoma HepG2 cells. Deletion analysis of the p21 promoter showed that it contains a distal (positions −2,300/−210) and a proximal (positions −124 to −61) region that act synergistically to achieve high levels of constitutive expression. The proximal region that consists of multiple Sp1 binding sites is essential for constitutive p21 promoter activity in hepatocytes. This region also mediates the transcriptional activation of the p21 promoter by members of the Smad family of proteins, which play important role in the transduction of extracellular signals such as transforming growth factor β, activin, etc. Constitutive expression of p21 was severely reduced by a C-terminally truncated form of Smad4 that was shown previously to block signaling through Smads. Smad3/4 and to a much lesser extent Smad2/4 caused high levels of transcriptional activation of the p21 promoter. Transactivation was compromised by N- or C-terminally truncated forms of Smad3. By using Gal4-Sp1 fusion proteins, we show that Smad proteins can activate gene transcription via functional interactions with the ubiquitous factor Sp1. These data demonstrate that Smad proteins and Sp1 participate in the constitutive or inducible expression of the p21 gene in hepatic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent discovery of leptin receptors in peripheral tissue raises questions about which of leptin’s biological actions arise from direct effects of the hormone on extraneural tissues and what intracellular mechanisms are responsible for leptin’s effects on carbohydrate and lipid metabolism. The present study is focused on the action of leptin on hepatic metabolism. Nondestructive 13C NMR methodology was used to follow the kinetics of intermediary metabolism by monitoring flux of 13C-labeled substrate through several multistep pathways. In perfused liver from either ob/ob or lean mice, we found that acute treatment with leptin in vitro modulates pathways controlling carbohydrate flux into 13C-labeled glycogen, thereby rapidly enhancing synthesis by an insulin-independent mechanism. Acute treatment of ob/ob liver also caused a rapid stimulation of long-chain fatty acid synthesis from 13C-labeled acetyl-CoA by the de novo synthesis route. Chronic leptin treatment in vivo induced homeostatic changes that resulted in a tripling of the rate of glycogen synthesis via the gluconeogenic pathway from [2-13C]pyruvate in ob/ob mouse liver perfused in the absence of the hormone. Consistent with the 13C NMR results, leptin treatment of the ob/ob mouse in vivo resulted in significantly increased hepatic glycogen synthase activity. Chronic treatment with leptin in vivo exerted the opposite effect of acute treatment in vitro and markedly decreased hepatic de novo synthesis of fatty acids in ob/ob mouse liver. In agreement with the 13C NMR findings, activities of hepatic acetyl-CoA carboxylase and fatty acid synthase were significantly reduced by chronic treatment of the ob/ob mouse with leptin. Our data represent a demonstration of direct effects of leptin in the regulation of metabolism in the intact functioning liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic characteristics of reflex eye movements were measured in two strains of chronically prepared mice by using an infrared television camera system. The horizontal vestibulo-ocular reflex (HVOR) and horizontal optokinetic response (HOKR) were induced by sinusoidal oscillations of a turntable, in darkness, by 10° (peak to peak) at 0.11–0.50 Hz and of a checked-pattern screen, in light, by 5–20°at 0.11–0.17 Hz, respectively. The gains and phases of the HVOR and HOKR of the C57BL/6 mice were nearly equivalent to those of rabbits and rats, whereas the 129/Sv mice exhibited very low gains in the HVOR and moderate phase lags in the HOKR, suggesting an inherent sensory-motor anomaly. Adaptability of the HOKR was examined in C57BL/6 mice by sustained screen oscillation. When the screen was oscillated by 10° at 0.17 Hz, which induced sufficient retinal slips, the gain of the HOKR increased by 0.08 in 1 h on average, whereas the stimuli that induced relatively small or no retinal slips affected the gain very little. Lesions of the flocculi induced by local applications of 0.1% ibotenic acid and lesions of the inferior olivary nuclei induced by i.p. injection of 3-acetylpyridine in C57BL/6 mice little affected the dynamic characteristics of the HVOR and HOKR, but abolished the adaptation of the HOKR. These results indicate that the olivo-floccular system plays an essential role in the adaptive control of the ocular reflex in mice, as suggested in other animal species. The data presented provide the basis for analyzing the reflex eye movements of genetically engineered mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12°C). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) is a well characterized cytokine that appears to play a major role in directing the cellular response to injury, driving fibrogenesis, and, thus, potentially underlying the progression of chronic injury to fibrosis. In this study, we report the use of a novel TGF-β receptor antagonist to block fibrogenesis induced by ligation of the common bile duct in rats. The antagonist consisted of a chimeric IgG containing the extracellular portion of the TGF-β type II receptor. This “soluble receptor” was infused at the time of injury; in some experiments it was given at 4 days after injury, as a test of its ability to reverse fibrogenesis. The latter was assessed by expression of collagen, both as the mRNA in stellate cells isolated from control or injured liver and also by quantitative histochemistry of tissue sections. When the soluble receptor was administered at the time of injury, collagen I mRNA in stellate cells from the injured liver was 26% of that from animals receiving control IgG (P < 0.0002); when soluble receptor was given after injury induction, collagen I expression was 35% of that in control stellate cells (P < 0.0001). By quantitative histochemistry, hepatic fibrosis in treated animals was 55% of that in controls. We conclude that soluble TGF-β receptor is an effective inhibitor of experimental fibrogenesis in vivo and merits clinical evaluation as a novel agent for controlling hepatic fibrosis in chronic liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic glucokinase plays a key role in glucose metabolism as underlined by the anomalies associated with glucokinase mutations and the consequences of tissue-specific knock-out. In the liver, glucokinase transcription is absolutely dependent on the presence of insulin. The cis-elements and trans-acting factors that mediate the insulin effect are presently unknown; this is also the case for most insulin-responsive genes. We have shown previously that the hepatic expression of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) is activated by insulin. We show here in primary cultures of hepatocytes that the adenovirus-mediated transduction of a dominant negative form of SREBP-1c inhibits the insulin effect on endogenous glucokinase expression. Conversely, in the absence of insulin, the adenovirus-mediated transduction of a dominant positive form of SREBP-1c overcomes the insulin dependency of glucokinase expression. Hepatic fatty acid synthase and Spot-14 are insulin/glucose-dependent genes. For this latter class of genes, the dominant positive form of SREBP-1c obviates the necessity for the presence of insulin, whereas glucose potentiates the effect of SREBP-1c on their expression. In addition, the insulin dependency of lipid accumulation in cultured hepatocytes is overcome by the dominant positive form of SREBP-1c. We propose that SREBP-1c is a major mediator of insulin action on hepatic gene expression and a key regulator of hepatic glucose/lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human serum albumin (HSA) derivatized with cis-aconitic anhydride was covalently coupled to liposomes with a size of approximately 100 nm [polyaconitylated HSA (Aco-HSA) liposomes]. Within 30 min after injection into a rat, Aco-HSA liposomes were completely cleared from the blood and almost exclusively taken up by the liver, whereas in control liposomes 80% was still present in the blood at that time. Endothelial cells were shown to account for almost two-thirds of the hepatic uptake of the Aco-HSA liposomes, the remainder being recovered mainly in the liver macrophages (Kupffer cells). With fluorescently labeled liposomes it was shown that the Aco-HSA liposomes target a vast majority (>85%) of the cells in the endothelial cell population. Control liposomes were not taken up to a significant extent by the endothelial cells. Uptake of Aco-HSA liposomes by both endothelial and Kupffer cells was inhibited by preinjection with polyinosinic acid, indicating the involvement of scavenger receptors in the uptake process. The uptake of Aco-HSA liposomes by liver endothelial cells was dependent on liposome size; with increasing liposome diameter endothelial cell uptake decreased in favor of Kupffer cell uptake. We have demonstrated that massive in vivo targeting of liposomes to a defined cell population other than macrophages is possible. Aco-HSA liposomes thus may represent an attractive drug carrier system for treatment of various liver or liver endothelium-associated disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular proliferation and tissue remodeling are central to the regenerative response after a toxic injury to the liver. To explore the role of plasminogen in hepatic tissue remodeling and regeneration, we used carbon tetrachloride to induce an acute liver injury in plasminogen-deficient (Plgo) mice and nontransgenic littermates (Plg+). On day 2 after CCl4, livers of Plg+ and Plgo mice had a similar diseased pale/lacy appearance, followed by restoration of normal appearance in Plg+ livers by day 7. In contrast, Plgo livers remained diseased for as long as 2.5 months, with a diffuse pale/lacy appearance and persistent damage to centrilobular hepatocytes. The persistent centrilobular lesions were not a consequence of impaired proliferative response in Plgo mice. Notably, fibrin deposition was a prominent feature in diseased centrilobular areas in Plgo livers for at least 30 days after injury. Nonetheless, the genetically superimposed loss of the Aα fibrinogen chain (Plgo/Fibo mice) did not correct the abnormal phenotype. These data show that plasminogen deficiency impedes the clearance of necrotic tissue from a diseased hepatic microenvironment and the subsequent reconstitution of normal liver architecture in a fashion that is unrelated to circulating fibrinogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. XPD has a 5′- to 3′-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Δ9-Desaturase is a key enzyme in the synthesis of desaturated fatty acyl-CoAs. Desaturase is an integral membrane protein induced in the endoplasmic reticulum by dietary manipulations and then rapidly degraded. The proteolytic machinery that specifically degrades desaturase and other short-lived proteins in the endoplasmic reticulum has not been identified. As the first step in identifying cellular factors involved in the degradation of desaturase, liver subcellular fractions of rats that had undergone induction of this enzyme were examined. In livers from induced animals, desaturase was present in the microsomal, nuclear (P-1), and subcellular fractions (P-2). Incubation of desaturase containing fractions at physiological pH and temperature led to the complete disappearance of the enzyme. Washing microsomes with a buffer containing high salt decreased desaturase degradation activity. N-terminal sequence analysis of desaturase freshly isolated from the P-1 fraction without incubation indicated the absence of three residues from the N terminus, but the mobility of this desaturase preparation on SDS-PAGE was identical to the microsomal desaturase, which contains a masked N terminus under similar purification procedures. Addition of concentrated cytosol or the high-salt wash fraction did not enhance the desaturase degradation in the washed microsomes. Extensive degradation of desaturase in the high-salt washed microsomes could be restored by supplementation of the membranes with the lipid and protein components essential for the reconstituted desaturase catalytic activity. Lysosomotrophic agents leupeptin and pepstatin A were ineffective in inhibiting desaturase degradation. The calpain inhibitor, N-acetyl-leucyl-leucyl-methional, or the proteosome inhibitor, Streptomyces metabolite, lactacystin, did not inhibit the degradation of desaturase in the microsomal or the P-1 and P-2 fractions. These results show that the selective degradation of desaturase is likely to be independent of the lysosomal and the proteosome systems. The reconstitution of complete degradation of desaturase in the high-salt–washed microsomes by the components essential for its catalytic activity reflects that the degradation of this enzyme may depend on a specific orientation of desaturase and intramembranous interactions between desaturase and the responsible protease.