36 resultados para ear unfolding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translocation of mitochondrial precursor proteins across the mitochondrial outer membrane is facilitated by the translocase of the outer membrane (TOM) complex. By using site-specific photocrosslinking, we have mapped interactions between TOM proteins and a mitochondrial precursor protein arrested at two distinct stages, stage A (accumulated at 0°C) and stage B (accumulated at 30°C), in the translocation across the outer membrane at high resolution not achieved previously. Although the stage A and stage B intermediates were assigned previously to the forms bound to the cis site and the trans site of the TOM complex, respectively, the results of crosslinking indicate that the presequence of the intermediates at both stage A and stage B is already on the trans side of the outer membrane. The mature domain is unfolded and bound to Tom40 at stage B whereas it remains folded at stage A. After dissociation from the TOM complex, translocation of the stage B intermediate, but not of the stage A intermediate, across the inner membrane was promoted by the intermembrane-space domain of Tom22. We propose a new model for protein translocation across the outer membrane, where translocation of the presequence and unfolding of the mature domain are not necessarily coupled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force. We compare this with chemical unfolding rates for untethered modules extrapolated to 0 M denaturant. The unfolding rates obtained by the two methods are the same. Furthermore, the transition state for unfolding appears at the same position on the folding pathway when assessed by either method. These results indicate that mechanical unfolding of a single protein by AFM does indeed reflect the same event that is observed in traditional unfolding experiments. The way is now open for the extensive use of AFM to measure folding reactions at the single-molecule level. Single-molecule AFM recordings have the added advantage that they define the reaction coordinate and expose rare unfolding events that cannot be observed in the absence of chemical denaturants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the Schiff-base complex [Co(acetylacetonate-ethylenediimine)(NH3)2]+ with metmyoglobin at pH 6.5 yields a partially folded protein containing six Co(III) complexes. Although half of its α-helical secondary structure is retained, absorption and CD spectra indicate that the tertiary structure in both B-F and AGH domains is disrupted in the partially folded protein. In analogy to proton-induced unfolding, it is likely that the loss of tertiary structure is triggered by metal-ion binding to histidines. Cobalt(III)-induced unfolding of myoglobin is unique in its selectivity (other proteins are unaffected) and in allowing the isolation of the partially folded macromolecule (the protein does not refold or aggregate upon removal of free denaturant).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recessive mutation at the pale ear (ep) locus on mouse chromosome 19 was found to be the homologue of human Hermansky–Pudlak syndrome (HPS). A positional cloning strategy using yeast artificial chromosomes spanning the HPS locus was used to identify the HPS gene and its murine counterpart. These genes and their predicted proteins are highly conserved at the nucleotide and amino acid levels. Sequence analysis of the mutant ep gene revealed the insertion of an intracisternal A particle element in a protein-coding 3′ exon. Here we demonstrate that mice with the ep mutation exhibit abnormalities similar to human HPS patients in melanosomes and platelet-dense granules. These results establish an animal model of HPS and will facilitate biochemical and molecular analyses of the functions of this protein in the membranes of specialized intracellular organelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A question often posed in protein folding/unfolding studies is whether the process is fully cooperative or whether it contains sequential elements. To address this question, one needs tools capable of resolving different events. It seems that, at least in certain cases, two-dimensional (2D) IR correlation spectroscopy can provide answers to this question. To illustrate this point, we have turned to the Cro-V55C dimer of the λ Cro repressor, a protein known to undergo thermal unfolding in two discrete steps through a stable equilibrium intermediate. The secondary structure of this intermediate is compatible with that of a partially unfolded protein and involves a reorganization of the N terminus, whereas the antiparallel β-ribbon formed by the C-terminal part of each subunit remains largely intact. To establish whether the unfolding process involves sequential events, we have performed a 2D correlation analysis of IR spectra recorded over the temperature range of 20–95°C. The 2D IR correlation analysis indeed provides evidence for a sequential formation of the stable intermediate, which is created in three (closely related) steps. A first step entails the unfolding of the short N-terminal β-strand, followed by the unfolding of the α-helices in a second step, and the third step comprises the reorganization of the remaining β-sheet and of some unordered segments in the protein. The complete unfolding of the stable intermediate at higher temperatures also undergoes sequential events that ultimately end with the breaking of the H bonds between the two β-strands at the dimer interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use an off-lattice minimalist model to describe the effects of pressure in slowing down the folding/unfolding kinetics of proteins when subjected to increasingly larger pressures. The potential energy function used to describe the interactions between beads in the model includes the effects of pressure on the pairwise interaction of hydrophobic groups in water. We show that pressure affects the participation of contacts in the transition state. More significantly, pressure exponentially decreases the chain reconfigurational diffusion coefficient. These results are consistent with experimental results on the kinetics of pressure-denaturation of staphylococcal nuclease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efforts to identify the specific components of the mammalian inner ear have been hampered by the small number of neuroepithelial cells and the variety of supporting cells. To circumvent these difficulties, we used a PCR-based subtractive method on cDNA from 2-day-old mouse cochlea. A cDNA encoding a predicted 2910-amino acid protein related to mucin has been isolated. Several lines of evidence indicate, however, that this protein does not undergo the O-glycosylation characteristic to mucins. As confirmed by immunocytochemistry and biochemical experiments, this protein is specific to the inner ear. Immunohistofluorescence labeling showed that this protein is a component of all the acellular membranes of the inner ear: i.e., the tectorial membrane of the cochlea, the otoconial and accessory membranes of the utricule and saccule, the cupula of the semicircular canals, and a previously undescribed acellular material covering the otoconia of the saccule. The protein has been named otogelin with reference to its localization. A variety of nonsensory cells located underneath these membranes could be identified as synthesizing otogelin. Finally, this study revealed a maturation process of the tectorial membrane, as evidenced by the progressive organization of otogelin labeling into thick and spaced radial fiber-like structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recessive mouse mutant Mpv17 is characterized by the development of early-onset glomerulosclerosis, concomitant hypertension, and structural alterations of the inner ear. The primary cause of the disease is the loss of function of the Mpv17 protein, a peroxisomal gene product involved in reactive oxygen metabolism. In our search of a common mediator exerting effects on several aspects of the phenotype, we discovered that the absence of the Mpv17 gene product causes a strong increase in matrix metalloproteinase 2 (MMP-2) expression. This was seen in the kidney and cochlea of Mpv17-negative mice as well as in tissue culture cells derived from these animals. When these cells were transfected with the human Mpv17 homolog, an inverse causal relationship between Mpv17 and MMP-2 expression was established. These results indicate that the Mpv17 protein plays a crucial role in the regulation of MMP-2 and suggest that enhanced MMP-2 expression might mediate the mechanisms leading to glomerulosclerosis, inner ear disease, and hypertension in this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel thermodynamic approach to the reversible unfolding of proteins in aqueous urea solutions has been developed based on the premise that urea ligands are bound cooperatively to the macromolecule. When successive stoichiometric binding constants have values larger than expected from statistical effects, an equation for moles of bound urea can be derived that contains imaginary terms. For a very steep unfolding curve, one can then show that the fraction of protein unfolded, B̄, depends on the square of the urea concentration, U, and is given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\bar {B}=\frac{{\mathit{A}}^{{\mathit{2}}}_{{\mathit{1}}}{\mathit{e}}^{{\mathrm{{\lambda}}}n\bar {B}}{\mathit{U}}^{{\mathit{2}}}}{{\mathrm{1\hspace{.167em}+\hspace{.167em}}}{\mathit{A}}^{{\mathrm{2}}}_{{\mathrm{1}}}{\mathit{e}}^{{\mathrm{{\lambda}}}\bar {B}}{\mathit{U}}^{{\mathrm{2}}}}{\mathrm{.}}\end{equation*}\end{document} A12 is the binding constant as B̄→ 0, and λ is a parameter that reflects the augmentation in affinities of protein for urea as the moles bound increases to the saturation number, n. This equation provides an analytic expression that reproduces the unfolding curve with good precision, suggests a simple linear graphical procedure for evaluating A12 and λ, and leads to the appropriate standard free energy changes. The calculated ΔG° values reflect the coupling of urea binding with unfolding of the protein. Some possible implications of this analysis to protein folding in vivo are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present multiple native and denaturation simulations of the B and E domains of the three-helix bundle protein A, totaling 60 ns. The C-terminal helix (H3) consistently denatures later than either of the other two helices and contains residual helical structure in the denatured state. These results are consistent with experiments suggesting that the isolated H3 fragment is more stable than H1 and H2 and that H3 forms early in folding. Interestingly, the denatured state of the B domain is much more compact than that of the E domain. This sequence-dependent effect on the dimensions of the denatured state and the lack of correlation with structure suggest that the radius of gyration can be a misleading reaction coordinate for unfolding/folding. Various unfolding and refolding events are observed in the denaturation simulations. In some cases, the transitions are facilitated through interactions with other portions of the protein—contact-assisted helix formation. In the native simulations, the E domain is very stable: after 6 ns, the Cα root-mean-square deviation from the starting structure is less than 1.4 Å. In contrast, the native state of the B domain deviates more and its inter-helical angles fluctuate. In apparent contrast, we note that the B domain is thermodynamically more stable than the E domain. The simulations suggest that the increased stability of the B domain may be due to heightened mobility, and therefore entropy, in the native state and decreased mobility/entropy in the more compact denatured state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in single molecule manipulation methods offer a novel approach to investigating the protein folding problem. These studies usually are done on molecules that are naturally organized as linear arrays of globular domains. To extend these techniques to study proteins that normally exist as monomers, we have developed a method of synthesizing polymers of protein molecules in the solid state. By introducing cysteines at locations where bacteriophage T4 lysozyme molecules contact each other in a crystal and taking advantage of the alignment provided by the lattice, we have obtained polymers of defined polarity up to 25 molecules long that retain enzymatic activity. These polymers then were manipulated mechanically by using a modified scanning force microscope to characterize the force-induced reversible unfolding of the individual lysozyme molecules. This approach should be general and adaptable to many other proteins with known crystal structures. For T4 lysozyme, the force required to unfold the monomers was 64 ± 16 pN at the pulling speed used. Refolding occurred within 1 sec of relaxation with an efficiency close to 100%. Analysis of the force versus extension curves suggests that the mechanical unfolding transition follows a two-state model. The unfolding forces determined in 1 M guanidine hydrochloride indicate that in these conditions the activation barrier for unfolding is reduced by 2 kcal/mol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a stepwise “quantized” manner. Unfolding dynamics and forces required to stretch proteins depend sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value, which is determined by the barrier to unfolding when f = 0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single-molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horse ferricytochrome c (cyt c) undergoes exchange of one of its axial heme ligands (Met-80) for one or more non-native ligands under denaturing conditions. We have used 1H NMR spectroscopy to detect two conformations of paramagnetic cyt c with non-native heme ligation through a range of urea concentrations. One non-native form is an equilibrium unfolding intermediate observed under partially denaturing conditions and is attributed to replacement of Met-80 with one or more Lys side chains. The second non-native form, in which the native Met ligand is replaced by a His, is observed under strongly denaturing conditions. Thermodynamic analysis of these data indicates a relatively small ΔG (17 kJ/mol) for the transition from native to the Lys-ligated intermediate and a significantly larger ΔG (47 kJ/mol) for the transition from native to the His-ligated species. Although CD and fluorescence data indicate that the equilibrium unfolding of cyt c is a two-state process, these NMR results implicate an intermediate with His-Lys ligation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the detailed mechanism of protein folding requires dynamic, site-specific stereochemical information. The short time response of vibrational spectroscopies allows evaluation of the distribution of populations in rapid equilibrium as the peptide unfolds. Spectral shifts associated with isotopic labels along with local stereochemical sensitivity of vibrational circular dichroism (VCD) allow determination of the segment sequence of unfolding. For a series of alanine-rich peptides that form α-helices in aqueous solution, we used isotopic labeling and VCD to demonstrate that the α-helix noncooperatively unwinds from the ends with increasing temperature. For these blocked peptides, the C-terminal is frayed at 5°C. Ab initio level theoretical simulations of the IR and VCD band shapes are used to analyze the spectra and to confirm the conformation of the labeled components. The VCD signals associated with the labeled residues are amplified by coupling to the nonlabeled parts of the molecule. Thus small labeled segments are detectable and stereochemically defined in moderately large peptides in this report of site-specific peptide VCD conformational analysis.