69 resultados para cytochrome P450 2D6 gene
Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping.
Resumo:
The cytochrome P450 2C24 gene is characterized by the capability to generate, in rat kidney, a transcript containing exons 2 and 4 spliced at correct sites but having the donor site of exon 4 directly joined to the acceptor site of exon 2 (exon scrambling). By reverse transcriptase-PCR analysis, it is now shown that the only exons present in the scrambled transcript are exons 2, 3, and 4 and that this molecule lacks a poly(A)+ tail. Furthermore, the use of PCR primers in both orientations of either exon 2 or exon 4 revealed that the orders of the exons in the scrambled transcript are 2-3-4-2 and 4-2-3-4, respectively. These results, combined with the observation that P450 2C24 is a single-copy gene, with no duplication of the exon 2 to exon 4 segment, suggest that the scrambled transcript has properties consistent with that of a circular molecule. In line with this is the observation of an increased resistance of the transcript to phosphodiesterase I, a 3'-exonuclease. Moreover, an alternatively processed cytochrome P450 2C24 mRNA, lacking the three scrambled exons and having exon 1 directly joined to exon 5, has been identified in kidney and liver, tissues that express the scrambled transcript. This complete identity of the exons that are absent in the alternatively processed mRNA but present in the scrambled transcript is interpreted as indicative of the possibility that exon scrambling and exon skipping might be interrelated phenomena. It is therefore proposed that alternative pre-mRNA processing has the potential to generate not only mRNAs lacking one or more exons but also circular RNA molecules.
Resumo:
We have developed an efficient reverse-genetics protocol that uses expedient pooling and hybridization strategies to identify individual transfer-DNA insertion lines from a collection of 6000 independently transformed lines in as few as 36 polymerase chain reactions. We have used this protocol to systematically isolate Arabidopsis lines containing insertional mutations in individual cytochrome P450 genes. In higher plants P450 genes encode enzymes that perform an exceptionally wide range of functions, including the biosynthesis of primary metabolites necessary for normal growth and development, the biosynthesis of secondary products, and the catabolism of xenobiotics. Despite their importance, progress in assigning enzymatic function to individual P450 gene products has been slow. Here we report the isolation of the first 12 such lines, including one (CYP83B1-1) that displays a runt phenotype (small plants with hooked leaves), and three insertions in abundantly expressed genes. The DNAs used in this study are publicly available and can be used to systematically isolate mutants in Arabidopsis.
Resumo:
We have investigated two NADPH-cytochrome (Cyt) P450 reductase isoforms encoded by separate genes (AR1 and AR2) in Arabidopsis thaliana. We isolated AR1 and AR2 cDNAs using a mung bean (Phaseolus aureus L.) NADPH-Cyt P450 reductase cDNA as a probe. The recombinant AR1 and AR2 proteins produced using a baculovirus expression system showed similar Km values for Cyt c and NADPH, respectively. In the reconstitution system with a recombinant cinnamate 4-hydroxylase (CYP73A5), the recombinant AR1 and AR2 proteins gave the same level of cinnamate 4-hydroxylase activity (about 70 nmol min−1 nmol−1 P450). The AR2 gene expression was transiently induced by 4- and 3-fold within 1 h of wounding and light treatments, respectively, and the induction time course preceded those of CYP73A5 and a phenylalanine ammonia-lyase (PAL1) gene. On the contrary, the AR1 expression level did not change during the treatments. Analysis of the AR1 and AR2 gene structure revealed that only the AR2 promoter contained three putative sequence motifs (boxes P, A, and L), which are involved in the coordinated expression of CYP73A5 and other phenylpropanoid pathway genes. These results suggest the possibility that AR2 transcription may be functionally linked to the induced levels of phenylpropanoid pathway enzymes.
Resumo:
Despite the fact that Papilio glaucus and Papilio polyxenes share no single hostplant species, both species feed to varying extents on hostplants that contain furanocoumarins. P. glaucus contains two nearly identical genes, CYP6B4v2 and CYP6B5v1, and P. polyxenes contains two related genes, CYP6B1v3 and CYP6B3v2. Except for CYP6B3v2, the substrate specificity of which has not yet been defined, each of the encoded cytochrome P450 monooxygenases (P450s) metabolizes an array of linear furanocoumarins. All four genes are transcriptionally induced in larvae by exposure to the furanocoumarin xanthotoxin; several are also induced by other furanocoumarins. Comparisons of the organizational structures of these genes indicate that all have the same intron/exon arrangement. Sequences in the promoter regions of the P. glaucus CYP6B4v2/CYP6B5v1 genes and the P. polyxenes CYP6B3v2 gene are similar but not identical to the -146 to -97 region of CYP6B1v3 gene, which contains a xanthotoxin-responsive element (XRE-xan) important for basal and xanthotoxin-inducible transcription of CYP6B1v3. Complements of the xenobiotic-responsive element (XRE-AhR) in the dioxin-inducible human and rat CYP1A1 genes also exist in all four promoters, suggesting that these genes may be regulated by dioxin. Antioxidant-responsive elements (AREs) in mouse and rat glutathione S-transferase genes and the Barbie box element (Bar) in the bacterial CYP102 gene exist in the CYP6B1v3, CYP6B4v2, and CYP6B5v1 promoters. Similarities in the protein sequences, intron positions, and xanthotoxin- and xenobiotic-responsive promoter elements indicate that these insect CYP6B genes are derived from a common ancestral gene. Evolutionary comparisons between these P450 genes are the first available for a group of insect genes transcriptionally regulated by hostplant allelochemicals and provide insights into the process by which insects evolve specialized feeding habits.
Resumo:
A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca. The levels of CYP4C7 mRNA in the CA, measured by ribonuclease protection assays, were linked to the activity cycle of the glands. In adult females, CYP4C7 expression increased immediately after the peak of JH synthesis, reaching a maximum on day 7, just before oviposition. mRNA levels then declined after oviposition and during pregnancy. The CYP4C7 protein was produced in Escherichia coli as a C-terminal His-tagged recombinant protein. In a reconstituted system with insect NADPH cytochrome P450 reductase, cytochrome b5, and NADPH, the purified CYP4C7 metabolized (2E,6E)-farnesol to a more polar product that was identified by GC-MS and by NMR as (10E)-12-hydroxyfarnesol. CYP4C7 converted JH III to 12-trans-hydroxy JH III and metabolized other JH-like sesquiterpenoids as well. This ω-hydroxylation of sesquiterpenoids appears to be a metabolic pathway in the corpora allata that may play a role in the suppression of JH biosynthesis at the end of the gonotrophic cycle.
Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas
Resumo:
CYP1B1-null mice, created by targeted gene disruption in embryonic stem cells, were born at the expected frequency from heterozygous matings with no observable phenotype, thus establishing that CYP1B1 is not required for mouse development. CYP1B1 was not detectable in cultured embryonic fibroblast (EF) or in different tissues, such as lung, of the CYP1B1-null mouse treated with the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin whereas the equivalent wild-type EF cells express basal and substantial inducible CYP1B1 and lung expresses inducible CYP1B1. CYP1A1 is induced to far higher levels than CYP1B1 in liver, kidney, and lung in wild-type mice and is induced to a similar extent in CYP1B1-null mice. 7,12-dimethylbenz[a]anthracene (DMBA) was toxic in wild-type EFs that express CYP1B1 but not CYP1A1. These cells effectively metabolized DMBA, consistent with CYP1B1 involvement in producing the procarcinogenic 3,4-dihydrodiol as a major metabolite, whereas CYP1B1-null EF showed no significant metabolism and were resistant to DMBA-mediated toxicity. When wild-type mice were administered high levels of DMBA intragastrically, 70% developed highly malignant lymphomas whereas only 7.5% of CYP1B1-null mice had lymphomas. Skin hyperplasia and tumors were also more frequent in wild-type mice. These results establish that CYP1B1, located exclusively at extrahepatic sites, mediates the carcinogenicity of DMBA. Surprisingly, CYP1A1, which has a high rate of DMBA metabolism in vitro, is not sufficient for this carcinogenesis, which demonstrates the importance of extrahepatic P450s in determining susceptibility to chemical carcinogens and validates the search for associations between P450 expression and cancer risk in humans.
Resumo:
The early steps in the biosynthesis of Taxol involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation at C5, acetylation of this intermediate, and a second cytochrome P450-dependent hydroxylation at C10 to yield taxadien-5α-acetoxy-10β-ol. Subsequent steps of the pathway involve additional cytochrome P450 catalyzed oxygenations and CoA-dependent acylations. The limited feasibility of reverse genetic cloning of cytochrome P450 oxygenases led to the use of Taxus cell cultures induced for Taxol production and the development of an approach based on differential display of mRNA-reverse transcription-PCR, which ultimately provided full-length forms of 13 unique but closely related cytochrome P450 sequences. Functional expression of these enzymes in yeast was monitored by in situ spectrophotometry coupled to in vivo screening of oxygenase activity by feeding taxoid substrates. This strategy yielded a family of taxoid-metabolizing enzymes and revealed the taxane 10β-hydroxylase as a 1494-bp cDNA that encodes a 498-residue cytochrome P450 capable of transforming taxadienyl acetate to the 10β-hydroxy derivative; the identity of this latter pathway intermediate was confirmed by chromatographic and spectrometric means. The 10β-hydroxylase represents the initial cytochrome P450 gene of Taxol biosynthesis to be isolated by an approach that should provide access to the remaining oxygenases of the pathway.
Resumo:
We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase.
Resumo:
The 4-hydroxy metabolite of 17 beta-estradiol (E2) has been implicated in the carcinogenicity of this hormone. Previous studies showed that aryl hydrocarbon-receptor agonists induced a cytochrome P450 that catalyzed the 4-hydroxylation of E2. This activity was associated with human P450 1B1. To determine the relationship of the human P450 1B1 gene product and E2 4-hydroxylation, the protein was expressed in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the 4- and 2-hydroxylation of E2 with Km values of 0.71 and 0.78 microM and turnover numbers of 1.39 and 0.27 nmol product min-1.nmol P450-1, respectively. Treatment of MCF-7 human breast cancer cells with the aryl hydrocarbon-receptor ligand indolo[3,2-b]carbazole resulted in a concentration-dependent increase in P450 1B1 and P450 1A1 mRNA levels, and caused increased rates of 2-, 4-, 6 alpha-, and 15 alpha-hydroxylation of E2. At an E2 concentration of 10 nM, the increased rates of 2- and 4-hydroxylation were approximately equal, emphasizing the significance of the low Km P450 1B1-component of E2 metabolism. These studies demonstrate that human P450 1B1 is a catalytically efficient E2 4-hydroxylase that is likely to participate in endocrine regulation and the toxicity of estrogens.
Resumo:
The fah1 mutant of Arabidopsis is defective in the accumulation of sinapic acid-derived metabolites, including the guaiacyl-syringyl lignin typical of angiosperms. Earlier results indicated that the FAH1 locus encodes ferulate-5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase (P450) of the general phenylpropanoid pathway. We have cloned the gene encoding this P450 by T-DNA tagging and have confirmed the identity of the cloned gene by complementation of the mutant phenotype. F5H shows 34% amino acid sequence identity with the avocado ripening-induced P450 CYP71A1 and 32% identity with the flavonoid-3',5'-hydroxylases of Petunia hybrida. In contrast, it shares much less homology with cinnamate-4-hydroxylase, a P450 that catalyzes the hydroxylation of cinnamic acid three steps earlier in the general phenylpropanoid pathway. Since the highest degree of identity between F5H and previously sequenced P450s is only 34%, F5H identifies a new P450 subfamily that has been designated CYP84.
Resumo:
Transgenic and gene knockout techniques allow for in vivo study of the consequences of adding or subtracting specific genes. However, in some instances, such as the study of lethal mutations or of the physiological consequences of changing gene expression, turning on and off an introduced gene at will would be advantageous. We have used cytochrome p450 1A1 promoter to drive expression of the human apolipoprotein E (apoE) gene in transgenic mice. In six independent lines, robust expression of the transgene depended upon injection of the inducer beta-naphthoflavone, whereas the seventh line had high basal expression that was augmented further by the inducer. The low level of basal expression in an inducer-dependent line was confirmed upon breeding the transgene onto the hypercholesterolemic apoE-deficient background. In the basal state transgene expression was physiologically insignificant, as these mice were as hypercholesterolemic as their nontransgenic apoE-deficient littermates. When injected with the inducer, plasma cholesterol levels of the transgenic mice decreased dramatically as apoE expression was induced to yield greater than physiological levels in plasma. The inducer could pass transplacentally from an injected mother to her fetuses with concomitant induction of fetal transgene mRNA. Inducer could also pass via breast milk from an injected mother to her suckling neonatal pups, giving rise to the induction of human apoE in neonate plasma. These finding suggest a strategy to temporarily ameliorate genetic deficiencies that would otherwise lead to fetal or neonatal lethality.
Resumo:
Cytochrome P450 1A2 (CYP1A2) is a constitutively expressed hepatic enzyme that is highly conserved among mammals. This protein is primarily involved in oxidative metabolism of xenobiotics and is capable of metabolically activating numerous procarcinogens including aflatoxin B1, arylamines, heterocyclic amine food mutagens, and polycylic aromatic hydrocarbons. Expression of CYP1A2 is induced after exposure to certain aromatic hydrocarbons (i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin). Direct evidence for a role of CYP1A2 in any physiological or developmental pathway has not been documented. We now demonstrate that mice homozygous for a targeted mutation in the Cyp1a-2 gene are nonviable. Lethality occurs shortly after birth with symptoms of severe respiratory distress. Mutant neonates display impaired respiratory function associated with histological signs of lung immaturity, lack of air in alveoli at birth, and changes in expression of surfactant apoprotein in alveolar type II cells. The penetrance of the phenotype is not complete (19 mutants survived to adulthood out of 599 mice). Surviving animals, although lacking expression of CYP1A2, appear to be normal and are able to reproduce. These findings establish that CYP1A2 is critical for neonatal survival by influencing the physiology of respiration in neonates, thus offering etiological insights for neonatal respiratory distress syndrome.
Resumo:
The phenylpropanoid pathway provides precursors for the biosynthesis of soluble secondary metabolites and lignin in plants. Ferulate-5-hydroxylase (F5H) catalyzes an irreversible hydroxylation step in this pathway that diverts ferulic acid away from guaiacyl lignin biosynthesis and toward sinapic acid and syringyl lignin. This fact led us to postulate that F5H was a potential regulatory step in the determination of lignin monomer composition. To test this hypothesis, we have used Arabidopsis to examine the impact of F5H overexpression. Arabidopsis is a useful model system in which to study lignification because in wild-type plants, guaiacyl and syringyl lignins are deposited in a tissue-specific fashion, while the F5H-deficient fah1 mutant accumulates only guaiacyl lignin. Here we show that ectopic overexpression of F5H in Arabidopsis abolishes tissue-specific lignin monomer accumulation. Surprisingly, overexpression of F5H under the control of the lignification-associated cinnamate-4-hydroxylase promoter, but not the commonly employed cauliflower mosaic virus 35S promoter, generates a lignin that is almost entirely comprised of syringylpropane units. These experiments demonstrate that modification of F5H expression may enable engineering of lignin monomer composition in agronomically important plant species.
Resumo:
Cytochrome P450 3A4 is generally considered to be the most important human drug-metabolizing enzyme and is known to catalyze the oxidation of a number of substrates in a cooperative manner. An allosteric mechanism is usually invoked to explain the cooperativity. Based on a structure–activity study from another laboratory using various effector–substrate combinations and on our own studies using site-directed mutagenesis and computer modeling of P450 3A4, the most likely location of effector binding is in the active site along with the substrate. Our study was designed to test this hypothesis by replacing residues Leu-211 and Asp-214 with the larger Phe and Glu, respectively. These residues were predicted to constitute a portion of the effector binding site, and the substitutions were designed to mimic the action of the effector by reducing the size of the active site. The L211F/D214E double mutant displayed an increased rate of testosterone and progesterone 6β-hydroxylation at low substrate concentrations and a decreased level of heterotropic stimulation elicited by α-naphthoflavone. Kinetic analyses of the double mutant revealed the absence of homotropic cooperativity with either steroid substrate. At low substrate concentrations the steroid 6β-hydroxylase activity of the wild-type enzyme was stimulated by a second steroid, whereas L211F/D214E displayed simple substrate inhibition. To analyze L211F/D214E at a more mechanistic level, spectral binding studies were carried out. Testosterone binding by the wild-type enzyme displayed homotropic cooperativity, whereas substrate binding by L211F/D214E displayed hyperbolic behavior.
Resumo:
A catalyst has been synthesized comprising a manganese porphyrin carrying four beta-cyclodextrin groups. It catalyzes the hydroxylation of substrates of appropriate size carrying tert-butylphenyl groups that can hydrophobically bind into the cyclodextrin cavities. In one example as many as 650 catalytic turnovers are seen before the catalyst is oxidatively destroyed, and with a rate comparable to that of typical cytochrome P450 enzymes. In another example, a steroid derivative is regio- and stereoselectively hydroxylated at a single unactivated carbon atom, but more slowly and with fewer turnovers. The carbon attacked is not the most chemically reactive, and the selectivity is determined by the geometry of the catalyst-substrate complex. Nonbinding substrates are not reactive under the conditions used, and substrates with more flexible binding geometries give more than a single product.