81 resultados para cytochrome C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aa3 type cytochrome c oxidase consisting of the core subunits I and II only was isolated from the soil bacterium Paracoccus denitrificans and crystallized as complex with a monoclonal antibody Fv fragment. Crystals could be grown in the presence of a number of different nonionic detergents. However, only undecyl-β-d-maltoside and cyclohexyl-hexyl-β-d-maltoside yielded well-ordered crystals suitable for high resolution x-ray crystallographic studies. The crystals belong to space group P212121 and diffract x-rays to at least 2.5 Å (1 Å = 0.1 nm) resolution using synchrotron radiation. The structure was determined to a resolution of 2.7 Å using molecular replacement and refined to a crystallographic R-factor of 20.5% (Rfree = 25.9%). The refined model includes subunits I and II and the 2 chains of the Fv fragment, 2 heme A molecules, 3 copper atoms, and 1 Mg/Mn atom, a new metal (Ca) binding site, 52 tentatively identified water molecules, and 9 detergent molecules. Only four of the water molecules are located in the cytoplasmic half of cytochrome c oxidase. Most of them are near the interface of subunits I and II. Several waters form a hydrogen-bonded cluster, including the heme propionates and the Mg/Mn binding site. The Fv fragment binds to the periplasmic polar domain of subunit II and is critically involved in the formation of the crystal lattice. The crystallization procedure is well reproducible and will allow for the analysis of the structures of mechanistically interesting mutant cytochrome c oxidases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c oxidase catalyzes the reduction of oxygen to water that is accompanied by pumping of four protons across the mitochondrial or bacterial membrane. Triggered by the results of recent x-ray crystallographic analyses, published data concerning the coupling of individual electron transfer steps to proton pumping are reanalyzed: Conversion of the conventional oxoferryl intermediate F to the fully oxidized form O is connected to pumping of only one proton. Most likely one proton is already pumped during the double reduction of O, and only three protons during conversion of the “peroxy” forms P to O via the oxoferryl form F. Based on the available structural, spectroscopic, and mutagenesis data, a detailed mechanistic model, carefully considering electrostatic interactions, is presented. In this model, each of the four reductions of heme a during the catalytic cycle is coupled to the uptake of one proton via the D-pathway. These protons, but never more than two, are temporarily stored in the regions of the heme a and a3 propionates and are driven to the outside (“pumped”) by electrostatic repulsion from protons entering the active site during turnover. The first proton is pumped by uptake of one proton via the K-pathway during reduction, the second and third proton during the P → F transition when the D-pathway and the active site become directly connected, and the fourth one upon conversion of F to O. Atomic structures are assigned to each intermediate including F′ with an alternative route to O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined that a pigeon cytochrome c-derived peptide, p43–58, possesses two anchor residues, 46 and 54, for binding with the I-Ab molecule that are compatible to the position 1 (P1) and position 9 (P9) of the core region in the major histocompatibility complex (MHC) class II binding peptides, respectively. In the present study to analyze each binding site between P1 and P9 of p43–58 to either I-Ab or T cell antigen receptor (TCR), we investigated T cell responses to a series of peptides (P2K, P3K, P4K, P5K, P6K, P7K, and P8E) that sequentially substituted charged amino acid residues for the residues at P2 to P8 of p43–58. T cells from C57BL/10 (I-Ab) mice immunized with P4K or P6K did not mount appreciable proliferative responses to the immunogens, but those primed with other peptides (P2K, P3K, P5K, P7K, and P8E) showed substantial responses in an immunogen-specific manner. It was demonstrated by binding studies that P1 and P9 functioned as main anchors and P4 and P6 functioned as secondary anchors to I-Ab. Analyses of Vβ usage of T cell lines specific for these analogs suggested that P8 interacts with the complementarity-determining region 1 (CDR1)/CDR2 of the TCR β chain. Furthermore, sequencing of the TCR on T cell hybridomas specific for these analogs indicated that P5 interacts with the CDR3 of the TCR β chain. The present findings are consistent with the three-dimensional structure of the trimolecular complex that has been reported for TCR/peptide/MHC class I molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The “peroxy” intermediate (P form) of bovine cytochrome c oxidase was prepared by reaction of the two-electron reduced mixed-valence CO complex with 18O2 after photolytic removal of CO. The water present in the reaction mixture was recovered and analyzed for 18O enrichment by mass spectrometry. It was found that approximately one oxygen atom (18O) per one equivalent of the P form was present in the bulk water. The data show that the oxygen–oxygen dioxygen bond is already broken in the P intermediate and that one oxygen atom can be readily released or exchanged with the oxygen of the solvent water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c release and the mitochondrial permeability transition (PT), including loss of the transmembrane potential (Δψ), play an important role in apoptosis. Using isolated mitochondria, we found that recombinant Bax and Bak, proapoptotic members of the Bcl-2 family, induced mitochondrial Δψ loss, swelling, and cytochrome c release. All of these changes were dependent on Ca2+ and were prevented by cyclosporin A (CsA) and bongkrekic acid, both of which close the PT pores (megachannels), indicating that Bax- and Bak-induced mitochondrial changes were mediated through the opening of these pores. Bax-induced mitochondrial changes were inhibited by recombinant Bcl-xL and transgene-derived Bcl-2, antiapoptotic members of the Bcl-2 family, as well as by oligomycin, suggesting a possible regulatory effect of F0F1-ATPase on Bax-induced mitochondrial changes. Proapoptotic Bax- and Bak-BH3 (Bcl-2 homology) peptides, but not a mutant BH3 peptide nor a mutant Bak lacking BH3, induced the mitochondrial changes, indicating an essential role of the BH3 region. A coimmunoprecipitation study revealed that Bax and Bak interacted with the voltage-dependent anion channel, which is a component of PT pores. Taken together, these findings suggest that proapoptotic Bcl-2 family proteins, including Bax and Bak, induce the mitochondrial PT and cytochrome c release by interacting with the PT pores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the “peroxy” to “oxoferryl” transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s−1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s−1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA → heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3–CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c maturation in Escherichia coli requires the ccm operon, which encodes eight membrane proteins (CcmABCDEFGH). CcmE is a periplasmic heme chaperone that binds heme covalently and transfers it onto apocytochrome c in the presence of CcmF, CcmG, and CcmH. In this work we addressed the functions of the ccmABCD gene products with respect to holo-CcmE formation and the subsequent ligation of heme to apocytochrome c. In the absence of the ccmABCD genes, heme is not bound to CcmE. We report that CcmC is functionally uncoupled from the ABC transporter subunits CcmA and CcmB, because it is the only Ccm protein that is strictly required for heme transfer and attachment to CcmE. Site-directed mutagenesis of conserved histidines inactivates the CcmC protein, which is in agreement with the hypothesis that this protein interacts directly with heme. We also present evidence that questions the role of CcmAB as a heme exporter; yet, the transported substrate remains unknown. CcmD was found to be involved in stabilizing the heme chaperone CcmE in the membrane. We propose a heme-trafficking pathway as part of a substantially revised model for cytochrome c maturation in E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Farnesyltransferase inhibitors (FTIs) represent a new class of anticancer drugs that show promise in blocking the growth of tumors. Here, we report that FTIs are capable of inducing apoptosis of transformed but not untransformed cells. Treatment of v-K-ras-transformed normal rat kidney (KNRK) cells with FTIs leads to the induction of apoptotic cell morphology, chromatin condensation and DNA fragmentation. In addition, fluorescence-activated cell sorter analysis of FTI-treated KNRK cells shows a sub-G1 apoptotic peak (chromosome content of <2 N). This FTI-induced apoptosis is evident only when the cells are grown in low serum conditions (0.1% fetal calf serum) and is observed selectively with transformed KNRK cells and not with untransformed NRK cells. Further analysis of the mechanism underlying this apoptosis has shown that FTI treatment of KNRK cells results in the activation of caspase 3 but not caspase 1. Moreover, the addition of Z-DEVD-fmk, an agent that interferes with caspase 3 activity, can inhibit FTI-induced apoptosis in a dose-dependent manner. Introduction of the CASP-3 gene into MCF7 cells, which lack caspase 3 activity, results in a significant increase of FTI-induced apoptosis. Furthermore, FTI induces the release of cytochrome c into the cytosol. This release is an important feature of caspase 3-mediated apoptosis. These results suggest that FTIs induce apoptosis through the release of cytochrome c from the mitochondria resulting in caspase 3 activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria are affected by low temperature during seedling establishment in maize (Zea mays L.). We evaluated the associated changes in the mitochondrial properties of populations selected for high (C4-H) and low (C4-L) germination levels at 9.5°C. When seedlings of the two populations were grown at 14°C (near the lower growth limit), the mitochondrial inner membranes of C4-H showed a higher percentage of 18-carbon unsaturated fatty acids, a higher fluidity, and a higher activity of cytochrome c oxidase. We found a positive relationship between these properties and the activity of a mitochondrial peroxidase, allowing C4-H to reduce lipid peroxidation relative to C4-L. The specific activity of reconstituted ATP/ADP translocase was positively associated with this peroxidase activity, suggesting that translocase activity is also affected by chilling. The level of oxidative stress and defense mechanisms are differently expressed in tolerant and susceptible populations when seedlings are grown at a temperature near the lower growth limit. Thus, the interaction between membrane lipids and cytochrome c oxidase seems to play a key role in maize chilling tolerance. Furthermore, the divergent-recurrent selection procedure apparently affects the allelic frequencies of genes controlling such an interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c oxidase is a membrane-bound enzyme that catalyzes the four-electron reduction of oxygen to water. This highly exergonic reaction drives proton pumping across the membrane. One of the key questions associated with the function of cytochrome c oxidase is how the transfer of electrons and protons is coupled and how proton transfer is controlled by the enzyme. In this study we focus on the function of one of the proton transfer pathways of the R. sphaeroides enzyme, the so-called K-proton transfer pathway (containing a highly conserved Lys(I-362) residue), leading from the protein surface to the catalytic site. We have investigated the kinetics of the reaction of the reduced enzyme with oxygen in mutants of the enzyme in which a residue [Ser(I-299)] near the entry point of the pathway was modified with the use of site-directed mutagenesis. The results show that during the initial steps of oxygen reduction, electron transfer to the catalytic site (to form the “peroxy” state, Pr) requires charge compensation through the proton pathway, but no proton uptake from the bulk solution. The charge compensation is proposed to involve a movement of the K(I-362) side chain toward the binuclear center. Thus, in contrast to what has been assumed previously, the results indicate that the K-pathway is used during oxygen reduction and that K(I-362) is charged at pH ≈ 7.5. The movement of the Lys is proposed to regulate proton transfer by “shutting off” the protonic connectivity through the K-pathway after initiation of the O2 reduction chemistry. This “shutoff” prevents a short-circuit of the proton-pumping machinery of the enzyme during the subsequent reaction steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (<20 μM). In this study, we present evidence for a consumption of NO in mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced (FeII) Rhodopseudomonas palustris cytochrome c′ (Cyt c′) is more stable toward unfolding ([GuHCl]1/2 = 2.9(1) M) than the oxidized (FeIII) protein ([GuHCl]1/2 = 1.9(1) M). The difference in folding free energies (ΔΔGf° = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution (≈−150 mV). The spectroscopic features of unfolded FeII–Cyt c′ indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded FeII(CO)–Cyt cconfirm that methionine can bind to the ferroheme on the microsecond time scale [kobs = 5(2) × 104 s−1]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded FeIII–Cyt c′ ([GuHCl] = 2.02–2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding (≈103 s−1), intermediate-folding (102–101 s−1), and slow-folding (10−1 s−1) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded FeIII–Cyt c′ in the presence of CO are attributable to CO binding [1.4(6) × 103 s−1] and FeII(CO)–Cyt c′ folding [2.8(9) s−1] processes; stopped-flow triggered folding of FeIII–Cyt c′ (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of ≈4 ms [ΔGf° = −33(3) kJ mol−1] at zero denaturant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some intermediates in the reduction of O2 to water by cytochrome-c oxidase have been characterized by optical, Raman, and magnetic circular dichroism spectroscopy. The so-called "peroxy" (P) and "ferryl" (F) forms of the enzyme, which have been considered to be intermediates of the oxygen reaction, can be generated when the oxidized enzyme reacts with H2O2, or when the two-electron reduced ("CO mixed-valence") enzyme reacts with O2. The structures as well as the overall redox states of P and F have recently been controversial. We show here, using tris(2,2'-bipyridyl)ruthenium(II) as a photoinducible reductant, that one-electron reduction of P yields F, and that one-electron reduction of F yields the oxidized enzyme. This confirms that the overall redox states of P and F differ from the oxidized enzyme by two and one electron equivalents, respectively. The structures of the P and F states are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.