55 resultados para chronic myeloid leukemia
Resumo:
Primitive subsets of leukemic cells isolated by using fluorescence-activated cell sorting from patients with newly diagnosed Ph+/BCR–ABL+ chronic myeloid leukemia display an abnormal ability to proliferate in vitro in the absence of added growth factors. We now show from analyses of growth-factor gene expression, protein production, and antibody inhibition studies that this deregulated growth can be explained, at least in part, by a novel differentiation-controlled autocrine mechanism. This mechanism involves the consistent and selective activation of IL-3 and granulocyte colony-stimulating factor (G-CSF) production and a stimulation of STAT5 phosphorylation in CD34+ leukemic cells. When these cells differentiate into CD34− cells in vivo, IL-3 and G-CSF production declines, and the cells concomitantly lose their capacity for autonomous growth in vitro despite their continued expression of BCR–ABL. Based on previous studies of normal cells, excessive exposure of the most primitive chronic myeloid leukemia cells to IL-3 and G-CSF through an autocrine mechanism could explain their paradoxically decreased self-renewal in vitro and slow accumulation in vivo, in spite of an increased cycling activity and selective expansion of later compartments.
Resumo:
The recurring translocation t(11;16)(q23;p13.3) has been documented only in cases of acute leukemia or myelodysplasia secondary to therapy with drugs targeting DNA topoisomerase II. We show that the MLL gene is fused to the gene that codes for CBP (CREB-binding protein), the protein that binds specifically to the DNA-binding protein CREB (cAMP response element-binding protein) in this translocation. MLL is fused in-frame to a different exon of CBP in two patients producing chimeric proteins containing the AT-hooks, methyltransferase homology domain, and transcriptional repression domain of MLL fused to the CREB binding domain or to the bromodomain of CBP. Both fusion products retain the histone acetyltransferase domain of CBP and may lead to leukemia by promoting histone acetylation of genomic regions targeted by the MLL AT-hooks, leading to transcriptional deregulation via aberrant chromatin organization. CBP is the first partner gene of MLL containing well defined structural and functional motifs that provide unique insights into the potential mechanisms by which these translocations contribute to leukemogenesis.
Resumo:
The inv(16) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). The inv(16) fusion protein acts by dominantly interfering with AML-1/core binding factor β-dependent transcriptional regulation. Here we demonstrate that the inv(16) fusion protein cooperates with AML-1B to repress transcription. This cooperativity requires the ability of the translocation fusion protein to bind to AML-1B. Mutational analysis and cell fractionation experiments indicated that the inv(16) fusion protein acts in the nucleus and that repression occurs when the complex is bound to DNA. We also found that the inv(16) fusion protein binds to AML-1B when it is associated with the mSin3A corepressor. An AML-1B mutant that fails to bind mSin3A was impaired in cooperative repression, suggesting that the inv(16) fusion protein acts through mSin3 and possibly other corepressors. Finally, we demonstrate that the C-terminal portion of the inv(16) fusion protein contains a repression domain, suggesting a molecular mechanism for AML-1-mediated repression.
Resumo:
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure–function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP–CALM was targeted to the plasma membrane–coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP–CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP–CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin–CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.
Resumo:
Chronic lymphocytic leukemia (CLL) B cells characteristically exhibit low or undetectable surface B cell receptor (BCR) and diminished responses to BCR-mediated signaling. These features suggest that CLL cells may have sustained mutations affecting one or more of the BCR proteins required for receptor surface assembly and signal transduction. Loss of expression and mutations in the critical BCR protein B29 (Igβ, CD79b), are prevalent in CLL and could produce the hallmark features of these leukemic B cells. Because patient CLL cells are intractable to manipulation, we developed a model system to analyze B29 mutations. Jurkat T cells stably expressing μ, κ, and mb1 efficiently assembled a functional BCR when infected with recombinant vaccinia virus bearing wild-type B29. In contrast, a B29 CLL mutant protein truncated in the transmembrane domain did not associate with μ or mb1 at the cell surface. Another B29 CLL mutant lacking the C-terminal immunoreceptor tyrosine activation motif tyrosine and distal residues brought the receptor to the surface as well as wild-type B29 but showed significant impairment in anti-IgM-stimulated signaling events including mitogen-activated protein kinase activation. These findings demonstrate that B29 mutations previously identified in CLL patients can affect BCR-dependent signaling and may contribute to the unresponsive B cell phenotype in CLL. Finally, the features of the B29 mutations in CLL predict that they may be generated by somatic hypermutation.
Resumo:
The TEL/PDGFβR fusion protein is the product of the t(5;12) translocation in patients with chronic myelomonocytic leukemia. The TEL/PDGFβR is an unusual fusion of a putative transcription factor, TEL, to a receptor tyrosine kinase. The translocation fuses the amino terminus of TEL, containing the helix-loop-helix (HLH) domain, to the transmembrane and cytoplasmic domain of the PDGFβR. We hypothesized that TEL/PDGFβR self-association, mediated by the HLH domain of TEL, would lead to constitutive activation of the PDGFβR tyrosine kinase domain and cellular transformation. Analysis of in vitro-translated TEL/PDGFβR confirmed that the protein self-associated and that self-association was abrogated by deletion of 51 aa within the TEL HLH domain. In vivo, TEL/PDGFβR was detected as a 100-kDa protein that was constitutively phosphorylated on tyrosine and transformed the murine hematopoietic cell line Ba/F3 to interleukin 3 growth factor independence. Transformation of Ba/F3 cells required the HLH domain of TEL and the kinase activity of the PDGFβR portion of the fusion protein. Immunoblotting demonstrated that TEL/PDGFβR associated with multiple signaling molecules known to associate with the activated PDGFβR, including phospholipase C γ1, SHP2, and phosphoinositol-3-kinase. TEL/PDGFβR is a novel transforming protein that self-associates and activates PDGFβR-dependent signaling pathways. Oligomerization of TEL/PDGFβR that is dependent on the TEL HLH domain provides further evidence that the HLH domain, highly conserved among ETS family members, is a self-association motif.
Resumo:
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and one of four fusion partners: PML, PLZF, NPM, and NuMA genes. To study the leukemogenic potential of the fusion genes in vivo, we generated transgenic mice with PLZF–RARα and NPM–RARα. PLZF–RARα transgenic animals developed chronic myeloid leukemia-like phenotypes at an early stage of life (within 3 months in five of six mice), whereas three NPM–RARα transgenic mice showed a spectrum of phenotypes from typical APL to chronic myeloid leukemia relatively late in life (from 12 to 15 months). In contrast to bone marrow cells from PLZF–RARα transgenic mice, those from NPM–RARα transgenic mice could be induced to differentiate by all-trans-retinoic acid (ATRA). We also studied RARE binding properties and interactions between nuclear corepressor SMRT and various fusion proteins in response to ATRA. Dissociation of SMRT from different receptors was observed at ATRA concentrations of 0.01 μM, 0.1 μM, and 1.0 μM for RARα–RXRα, NPM–RARα, and PML–RARα, respectively, but not observed for PLZF–RARα even in the presence of 10 μM ATRA. We also determined the expression of the tissue factor gene in transgenic mice, which was detected only in bone marrow cells of mice expressing the fusion genes. These data clearly establish the leukemogenic role of PLZF–RARα and NPM–RARα and the importance of fusion receptor/corepressor interactions in the pathogenesis as well as in determining different clinical phenotypes of APL.
Resumo:
MLL (ALL1, Htrx, HRX), which is located on chromosome band 11q23, frequently is rearranged in patients with therapy-related acute myeloid leukemia who previously were treated with DNA topoisomerase II inhibitors. In this study, we have identified a fusion partner of MLL in a 10-year-old female who developed therapy-related acute myeloid leukemia 17 months after treatment for Hodgkin’s disease. Leukemia cells of this patient had a t(11;17)(q23;q25), which involved MLL as demonstrated by Southern blot analysis. The partner gene was cloned from cDNA of the leukemia cells by use of a combination of adapter reverse transcriptase–PCR, rapid amplification of 5′ cDNA ends, and blast database analysis to identify expressed sequence tags. The full-length cDNA of 2.8 kb was found to be an additional member of the septin family, therefore it was named MSF (MLL septin-like fusion). Members of the septin family conserve the GTP binding domain, localize in the cytoplasm, and interact with cytoskeletal filaments. A major 4-kb transcript of MSF was expressed ubiquitously; a 1.7-kb transcript was found in most tissues. An additional 3-kb transcript was found only in hematopoietic tissues. By amplification with MLL exon 5 forward primer and reverse primers in MSF, the appropriately sized products were obtained. MSF is highly homologous to hCDCrel-1, which is a partner gene of MLL in leukemias with a t(11;22)(q23;q11.2). Further analysis of MSF may help to delineate the function of MLL partner genes in leukemia, particularly in therapy-related leukemia.
Resumo:
β1-integrin engagement on normal (NL) CD34+ cells increases levels of the cyclin-dependent kinase inhibitor (cdki), p27Kip, decreases cdk2 activity, and inhibits G1/S-phase progression. In contrast, β1-integrin engagement on chronic myelogenous leukemia (CML) CD34+ cells does not inhibit G1/S progression. We now show that, in CML, baseline p27Kip levels are significantly higher than in NL CD34+ cells, but adhesion to fibronectin (FN) does not increase p27Kip levels. p27Kip mRNA levels are similar in CML and NL CD34+ cells and remain unchanged after adhesion, suggesting posttranscriptional regulation. Despite the elevated p27Kip levels, cdk2 kinase activity is similar in CML and NL CD34+ cells. In NL CD34+ cells, >90% of p27Kip is located in the nucleus, where it binds to cdk2 after integrin engagement. In CML CD34+ cells, however, >80% of p27Kip is located in the cytoplasm even in FN-adherent cells, and significantly less p27Kip is bound to cdk2. Thus, presence of BCR/ABL induces elevated levels of p27Kip and relocation of p27Kip to the cytoplasm, which contributes to the loss of integrin-mediated proliferation inhibition, characteristic of CML.
Resumo:
We examined the MLL genomic translocation breakpoint in acute myeloid leukemia of infant twins. Southern blot analysis in both cases showed two identical MLL gene rearrangements indicating chromosomal translocation. The rearrangements were detectable in the second twin before signs of clinical disease and the intensity relative to the normal fragment indicated that the translocation was not constitutional. Fluorescence in situ hybridization with an MLL-specific probe and karyotype analyses suggested t(11;22)(q23;q11.2) disrupting MLL. Known 5′ sequence from MLL but unknown 3′ sequence from chromosome band 22q11.2 formed the breakpoint junction on the der(11) chromosome. We used panhandle variant PCR to clone the translocation breakpoint. By ligating a single-stranded oligonucleotide that was homologous to known 5′ MLL genomic sequence to the 5′ ends of BamHI-digested DNA through a bridging oligonucleotide, we formed the stem–loop template for panhandle variant PCR which yielded products of 3.9 kb. The MLL genomic breakpoint was in intron 7. The sequence of the partner DNA from band 22q11.2 was identical to the hCDCrel (human cell division cycle related) gene that maps to the region commonly deleted in DiGeorge and velocardiofacial syndromes. Both MLL and hCDCrel contained homologous CT, TTTGTG, and GAA sequences within a few base pairs of their respective breakpoints, which may have been important in uniting these two genes by translocation. Reverse transcriptase-PCR amplified an in-frame fusion of MLL exon 7 to hCDCrel exon 3, indicating that an MLL-hCDCrel chimeric mRNA had been transcribed. Panhandle variant PCR is a powerful strategy for cloning translocation breakpoints where the partner gene is undetermined. This application of the method identified a region of chromosome band 22q11.2 involved in both leukemia and a constitutional disorder.
Resumo:
The t(8;21) translocation between two genes known as AML1 and ETO is seen in approximately 12–15% of all acute myeloid leukemia (AML) and is the second-most-frequently observed nonrandom genetic alteration associated with AML. AML1 up-regulates a number of target genes critical to normal hematopoiesis, whereas the AML1/ETO fusion interferes with this trans-activation. We discovered that the fusion partner ETO binds to the human homolog of the murine nuclear receptor corepressor (N-CoR). The interaction is mediated by two unusual zinc finger motifs present at the carboxyl terminus of ETO. Human N-CoR (HuN-CoR), which we cloned and sequenced in its entirety, encodes a 2,440-amino acid polypeptide and has a central domain that binds ETO. N-CoR, mammalian Sin3 (mSin3A and B), and histone deacetylase 1 (HDAC1) form a complex that alters chromatin structure and mediates transcriptional repression by nuclear receptors and by a number of oncoregulatory proteins. We found that ETO, through its interaction with the N-CoR/mSin3/HDAC1 complex, is also a potent repressor of transcription. This observation provides a mechanism for how the AML1/ETO fusion may inhibit expression of AML1-responsive target genes and disturb normal hematopoiesis.
Resumo:
A mammalian A-type cyclin, cyclin A1, is highly expressed in testes of both human and mouse and targeted mutagenesis in the mouse has revealed the unique requirement for cyclin A1 in the progression of male germ cells through the meiotic cell cycle. While very low levels of cyclin A1 have been reported in the human hematopoietic system and brain, the sites of elevated levels of expression of human cyclin A1 were several leukemia cell lines and blood samples from patients with hematopoietic malignances, notably acute myeloid leukemia. To evaluate whether cyclin A1 is directly involved with the development of myeloid leukemia, mouse cyclin A1 protein was overexpressed in the myeloid lineage of transgenic mice under the direction of the human cathepsin G (hCG) promoter. The resulting transgenic mice exhibited an increased proportion of immature myeloid cells in the peripheral blood, bone marrow, and spleen. The abnormal myelopoiesis developed within the first few months after birth and progressed to overt acute myeloid leukemia at a low frequency (≈15%) over the course of 7–14 months. Both the abnormalities in myelopoiesis and the leukemic state could be transplanted to irradiated SCID (severe combined immunodeficient) mice. The observations suggest that cyclin A1 overexpression results in abnormal myelopoiesis and is necessary, but not sufficient in the cooperative events inducing the transformed phenotype. The data further support an important role of cyclin A1 in hematopoiesis and the etiology of myeloid leukemia.
Resumo:
This report describes a tumor-associated antigen, termed CML66, initially cloned from a chronic myelogenous leukemia (CML) cDNA expression library. CML66 encodes a 583-aa protein with a molecular mass of 66 kDa and no significant homology to other known genes. CML66 gene is localized to human chromosome 8q23, but the function of this gene is unknown. CML66 is expressed in leukemias and a variety of solid tumor cell lines. When examined by Northern blot, expression in normal tissues was restricted to testis and heart, and no expression was found in hematopoietic tissues. When examined by quantitative reverse transcription–PCR, expression in CML cells was 1.5-fold higher than in normal peripheral blood mononuclear cells. The presence of CML66-specific antibody in patient serum was confirmed by Western blot and the development of high titer IgG antibody specific for CML66 correlated with immune induced remission of CML in a patient who received infusion of normal donor lymphocytes for treatment of relapse. CML66 antibody also was found in sera from 18–38% of patients with lung cancer, melanoma, and prostate cancer. These findings suggest that CML66 may be immunogenic in a wide variety of malignancies and may be a target for antigen-specific immunotherapy.
Resumo:
We have generated a physical map of human chromosome bands 20q11.2-20q13.1, a region containing a gene involved in the development of one form of early-onset, non-insulin-dependent diabetes mellitus, MODY1, as well as a putative myeloid tumor suppressor gene. The yeast artificial chromosome contig consists of 71 clones onto which 71 markers, including 20 genes, 5 expressed sequence tags, 32 simple tandem repeat DNA polymorphisms, and 14 sequence-tagged sites have been ordered. This region spans about 18 Mb, which represents about 40% of the physical length of 20q. Using this physical map, we have refined the location of MODY1 to a 13-centimorgan interval (approximately equal to 7 Mb) between D20S169 and D20S176. The myeloid tumor suppressor gene was localized to an 18-centimorgan interval (approximately equal to 13 Mb) between RPN2 and D20S17. This physical map will facilitate the isolation of MODY1 and the myeloid tumor suppressor gene.
Resumo:
The human chromosome 21 AML1 gene is expressed predominantly in the hematopoietic system. In several leukemia-associated translocations AML1 is fused to other genes and transcription of the fused regions is mediated by upstream sequences that normally regulate the expression of AML1. The 5' genomic region of AML1 was cloned and sequenced. The two 5' untranslated regions (UTRs) previously identified in AML1 cDNAs were located in this region and the distance between them was established. The distal 5' UTR maps over 7 kb upstream of the proximal one. Using primer extension with mRNA, transcription start sites were identified at two distinct sites above these 5' uTRs. Sequence analysis revealed the absence of a TATA motif and the presence of Sp1, PU.1, Oct, CRE, Myb, Ets, and Ets-like binding sites in both upstream regions. Several initiator elements (Inr) that overlap the transcription start sites were also identified. These proximal and distal upstream regions and their deletion mutants were cloned in front of a luciferase reporter gene and used in transfection assays. We demonstrate that both upstream regions function as promoters in hematopoietic (Jurkat) and nonhematopoietic (HEK) cell lines. The activity of both promoters was orientation dependent and was enhanced, in a cell-type specific manner, by a heterologous enhancer sequence. These results indicate that additional control elements, either negative or positive, regulate the tissue-specific expression of AML1.