210 resultados para arabidopsis
Resumo:
Little is known about plant circadian oscillators, in spite of how important they are to sessile plants, which require accurate timekeepers that enable the plants to respond to their environment. Previously, we identified a circadian clock-associated (CCA1) gene that encodes an Myb-related protein that is associated with phytochrome control and circadian regulation in plants. To understand the role CCA1 plays in phytochrome and circadian regulation, we have isolated an Arabidopsis line with a T DNA insertion that results in the loss of CCA1 RNA, of CCA1 protein, and of an Lhcb-promoter binding activity. This mutation affects the circadian expression of all four clock-controlled genes that we examined. The results show that, despite their similarity, CCA1 and LHY are only partially redundant. The lack of CCA1 also affects the phytochrome regulation of gene expression, suggesting that CCA1 has an additional role in a signal transduction pathway from light, possibly acting at the point of integration between phytochrome and the clock. Our results indicate that CCA1 is an important clock-associated protein involved in circadian regulation of gene expression.
Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis
Resumo:
Higher plant reproduction is unique because two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, a tissue that supports embryo development. To understand mechanisms that initiate reproduction, we isolated a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization. When mutant f644 egg and central cells are fertilized by wild-type sperm, embryo development is inhibited, and endosperm is overproduced. By using a map-based strategy, we cloned and sequenced the F644 gene and showed that it encodes a SET-domain polycomb protein. Subsequently, we found that F644 is identical to MEDEA (MEA), a gene whose maternal-derived allele is required for embryogenesis [Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A. & Gagliano, W. B. (1998) Science 280, 446–450]. Together, these results reveal functions for plant polycomb proteins in the suppression of central cell proliferation and endosperm development. We discuss models to explain how polycomb proteins function to suppress endosperm and promote embryo development.
Resumo:
We identified a set of cytokinin-insensitive mutants by using a screen based on the ethylene-mediated triple response observed after treatment with low levels of cytokinins. One group of these mutants disrupts ACS5, a member of the Arabidopsis gene family that encodes 1-aminocyclopropane-1-carboxylate synthase, the first enzyme in ethylene biosynthesis. The ACS5 isoform is mainly responsible for the sustained rise in ethylene biosynthesis observed in response to low levels of cytokinin and appears to be regulated primarily by a posttranscriptional mechanism. Furthermore, the dominant ethylene-overproducing mutant eto2 was found to be the result of an alteration of the carboxy terminus of ACS5, suggesting that this domain acts as a negative regulator of ACS5 function.
Resumo:
The phenylpropanoid pathway provides precursors for the biosynthesis of soluble secondary metabolites and lignin in plants. Ferulate-5-hydroxylase (F5H) catalyzes an irreversible hydroxylation step in this pathway that diverts ferulic acid away from guaiacyl lignin biosynthesis and toward sinapic acid and syringyl lignin. This fact led us to postulate that F5H was a potential regulatory step in the determination of lignin monomer composition. To test this hypothesis, we have used Arabidopsis to examine the impact of F5H overexpression. Arabidopsis is a useful model system in which to study lignification because in wild-type plants, guaiacyl and syringyl lignins are deposited in a tissue-specific fashion, while the F5H-deficient fah1 mutant accumulates only guaiacyl lignin. Here we show that ectopic overexpression of F5H in Arabidopsis abolishes tissue-specific lignin monomer accumulation. Surprisingly, overexpression of F5H under the control of the lignification-associated cinnamate-4-hydroxylase promoter, but not the commonly employed cauliflower mosaic virus 35S promoter, generates a lignin that is almost entirely comprised of syringylpropane units. These experiments demonstrate that modification of F5H expression may enable engineering of lignin monomer composition in agronomically important plant species.
Resumo:
Temperate plants develop a greater ability to withstand freezing in response to a period of low but nonfreezing temperatures through a complex, adaptive process of cold acclimation. Very little is known about the signaling processes by which plants perceive the low temperature stimulus and transduce it into the nucleus to activate genes needed for increased freezing tolerance. To help understand the signaling processes, we have isolated mutants of Arabidopsis that are constitutively freezing-tolerant in the absence of cold acclimation. Freezing tolerance of wild-type Arabidopsis was increased from −5.5°C to −12.6°C by cold acclimation whereas the freezing tolerance of 26 mutant lines ranged from −6.8°C to −10.6°C in the absence of acclimation. Plants with mutations at the eskimo1 (esk1) locus accumulated high levels of proline, a compatible osmolyte, but did not exhibit constitutively increased expression of several cold-regulated genes involved in freezing tolerance. RNA gel blot analysis suggested that proline accumulation in esk1 plants was mediated by regulation of transcript levels of genes involved in proline synthesis and degradation. The characterization of esk1 mutants and results from other mutants suggest that distinct signaling pathways activate different aspects of cold acclimation and that activation of one pathway can result in considerable freezing tolerance without activation of other pathways.
Resumo:
The cell death response known as the hypersensitive response (HR) is a central feature of gene-for-gene plant disease resistance. A mutant line of Arabidopsis thaliana was identified in which effective gene-for-gene resistance occurs despite the virtual absence of HR cell death. Plants mutated at the DND1 locus are defective in HR cell death but retain characteristic responses to avirulent Pseudomonas syringae such as induction of pathogenesis-related gene expression and strong restriction of pathogen growth. Mutant dnd1 plants also exhibit enhanced resistance against a broad spectrum of virulent fungal, bacterial, and viral pathogens. The resistance against virulent pathogens in dnd1 plants is quantitatively less strong and is differentiable from the gene-for-gene resistance mediated by resistance genes RPS2 and RPM1. Levels of salicylic acid compounds and mRNAs for pathogenesis-related genes are elevated constitutively in dnd1 plants. This constitutive induction of systemic acquired resistance may substitute for HR cell death in potentiating the stronger gene-for-gene defense response. Although cell death may contribute to defense signal transduction in wild-type plants, the dnd1 mutant demonstrates that strong restriction of pathogen growth can occur in the absence of extensive HR cell death in the gene-for-gene resistance response of Arabidopsis against P. syringae.
Resumo:
ETR1 represents a prototypical ethylene receptor. Homologues of ETR1 have been identified in Arabidopsis as well as in other plant species, indicating that ethylene perception involves a family of receptors and that the mechanism of ethylene perception is conserved in plants. The amino-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization. The carboxyl-terminal half of the polypeptide contains domains with homology to histidine kinases and response regulators, signaling motifs originally identified in bacteria. The putative histidine kinase domain of ETR1 was expressed in yeast as a fusion protein with glutathione S-transferase and affinity purified. Autophosphorylation of the purified fusion protein was observed on incubation with radiolabeled ATP. The incorporated phosphate was resistant to treatment with 3 M NaOH, but was sensitive to 1 M HCl, consistent with phosphorylation of histidine. Autophosphorylation was abolished by mutations that eliminated either the presumptive site of phosphorylation (His-353) or putative catalytic residues within the kinase domain. Truncations were used to delineate the region required for histidine kinase activity. An examination of cation requirements indicated that ETR1 requires Mn2+ for autophosphorylation. These results demonstrate that higher plants contain proteins with histidine kinase activity. Furthermore, these results indicate that aspects of ethylene signaling may be regulated by changes in histidine kinase activity of the receptor.
Resumo:
Physiological studies with excised stem segments have implicated the plant hormone indole-3-acetic acid (IAA or auxin) in the regulation of cell elongation. Supporting evidence from intact plants has been somewhat more difficult to obtain, however. Here, we report the identification and characterization of an auxin-mediated cell elongation growth response in Arabidopsis thaliana. When grown in the light at high temperature (29°C), Arabidopsis seedlings exhibit dramatic hypocotyl elongation compared with seedlings grown at 20°C. This temperature-dependent growth response is sharply reduced by mutations in the auxin response or transport pathways and in seedlings containing reduced levels of free IAA. In contrast, mutants deficient in gibberellin and abscisic acid biosynthesis or in ethylene response are unaffected. Furthermore, we detect a corresponding increase in the level of free IAA in seedlings grown at high temperature, suggesting that temperature regulates auxin synthesis or catabolism to mediate this growth response. Consistent with this possibility, high temperature also stimulates other auxin-mediated processes including auxin-inducible gene expression. Based on these results, we propose that growth at high temperature promotes an increase in auxin levels resulting in increased hypocotyl elongation. These results strongly support the contention that endogenous auxin promotes cell elongation in intact plants.
Resumo:
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3–2 fad7–2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
Resumo:
Millions of people worldwide suffer from nutritional imbalances of essential metals like zinc. These same metals, along with pollutants like cadmium and lead, contaminate soils at many sites around the world. In addition to posing a threat to human health, these metals can poison plants, livestock, and wildlife. Deciphering how metals are absorbed, transported, and incorporated as protein cofactors may help solve both of these problems. For example, edible plants could be engineered to serve as better dietary sources of metal nutrients, and other plant species could be tailored to remove metal ions from contaminated soils. We report here the cloning of the first zinc transporter genes from plants, the ZIP1, ZIP2, and ZIP3 genes of Arabidopsis thaliana. Expression in yeast of these closely related genes confers zinc uptake activities. In the plant, ZIP1 and ZIP3 are expressed in roots in response to zinc deficiency, suggesting that they transport zinc from the soil into the plant. Although expression of ZIP2 has not been detected, a fourth related Arabidopsis gene identified by genome sequencing, ZIP4, is induced in both shoots and roots of zinc-limited plants. Thus, ZIP4 may transport zinc intracellularly or between plant tissues. These ZIP proteins define a family of metal ion transporters that are found in plants, protozoa, fungi, invertebrates, and vertebrates, making it now possible to address questions of metal ion accumulation and homeostasis in diverse organisms.
Resumo:
A collection of 8,000 Arabidopsis thaliana plants carrying 48,000 insertions of the maize transposable element En-1 has been generated. This population was used for reverse genetic analyses to identify insertions in individual gene loci. By using a PCR-based screening protocol, insertions were found in 55 genes. En-1 showed no preference for transcribed or untranscribed regions nor for a particular orientation relative to the gene of interest. In several cases, En-1 was inserted within a few kilobases upstream or downstream of the gene. En-1 was mobilized from such positions into the respective gene to cause gene disruption. Knock-out alleles of genes involved in flavonoid biosynthesis were generated. One mutant line contained an En-1 insertion in the flavonol synthase gene (FLS) and showed drastically reduced levels of kaempferol. Allelism tests with other lines containing En-1 insertions in the flavanone 3-hydroxylase gene (F3H) demonstrated that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase. The f3h and fls null mutants complete the set of A. thaliana lines defective in early steps of the flavonoid pathway. These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence.
Resumo:
Nuclear magnetic resonance (NMR) of isolated lignins from an Arabidopsis mutant deficient in ferulate 5-hydroxylase (F5H) and transgenic plants derived from the mutant by overexpressing the F5H gene has provided detailed insight into the compositional and structural differences between these lignins. Wild-type Arabidopsis has a guaiacyl-rich, syringyl-guaiacyl lignin typical of other dicots, with prominent β-aryl ether (β–O–4), phenylcoumaran (β–5), resinol (β–β), biphenyl/dibenzodioxocin (5–5), and cinnamyl alcohol end-group structures. The lignin isolated from the F5H-deficient fah1–2 mutant contained only traces of syringyl units and consequently enhanced phenylcoumaran and dibenzodioxocin levels. In fah1–2 transgenics in which the F5H gene was overexpressed under the control of the cauliflower mosaic virus 35S promoter, a guaiacyl-rich, syringyl/guaiacyl lignin similar to the wild type was produced. In contrast, the isolated lignin from the fah1–2 transgenics in which F5H expression was driven by the cinnamate 4-hydroxylase promoter was almost entirely syringyl in nature. This simple lignin contained predominantly β-aryl ether units, mainly with erythro-stereochemistry, with some resinol structures. No phenylcoumaran or dibenzodioxocin structures (which require guaiacyl units) were detectable. The overexpression of syringyl units in this transgenic resulted in a lignin with a higher syringyl content than that in any other plant we have seen reported.
Resumo:
A wide range of processes in plants, including expression of certain genes, is regulated by endogenous circadian rhythms. The circadian clock-associated 1 (CCA1) and the late elongated hypocotyl (LHY) proteins have been shown to be closely associated with clock function in Arabidopsis thaliana. The protein kinase CK2 can interact with and phosphorylate CCA1, but its role in the regulation of the circadian clock remains unknown. Here we show that plants overexpressing CKB3, a regulatory subunit of CK2, display increased CK2 activity and shorter periods of rhythmic expression of CCA1 and LHY. CK2 is also able to interact with and phosphorylate LHY in vitro. Additionally, overexpression of CKB3 shortened the periods of four known circadian clock-controlled genes with different phase angles, demonstrating that many clock outputs are affected. This overexpression also reduced phytochrome induction of an Lhcb gene. Finally, we found that the photoperiodic flowering response, which is influenced by circadian rhythms, was diminished in the transgenic lines, and that the plants flowered earlier on both long-day and short-day photoperiods. These data demonstrate that CK2 is involved in regulation of the circadian clock in Arabidopsis.
Resumo:
The endogenous clock that drives circadian rhythms is thought to communicate temporal information within the cell via cycling downstream transcripts. A transcript encoding a glycine-rich RNA-binding protein, Atgrp7, in Arabidopsis thaliana undergoes circadian oscillations with peak levels in the evening. The AtGRP7 protein also cycles with a time delay so that Atgrp7 transcript levels decline when the AtGRP7 protein accumulates to high levels. After AtGRP7 protein concentration has fallen to trough levels, Atgrp7 transcript starts to reaccumulate. Overexpression of AtGRP7 in transgenic Arabidopsis plants severely depresses cycling of the endogenous Atgrp7 transcript. These data establish both transcript and protein as components of a negative feedback circuit capable of generating a stable oscillation. AtGRP7 overexpression also depresses the oscillation of the circadian-regulated transcript encoding the related RNA-binding protein AtGRP8 but does not affect the oscillation of transcripts such as cab or catalase mRNAs. We propose that the AtGRP7 autoregulatory loop represents a “slave” oscillator in Arabidopsis that receives temporal information from a central “master” oscillator, conserves the rhythmicity by negative feedback, and transduces it to the output pathway by regulating a subset of clock-controlled transcripts.
Resumo:
To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [γ-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.