19 resultados para antacid agent
Resumo:
The important role of furin in the proteolytic activation of many pathogenic molecules has made this endoprotease a target for the development of potent and selective antiproteolytic agents. Here, we demonstrate the utility of the protein-based inhibitor α1-antitrypsin Portland (α1-PDX) as an antipathogenic agent that can be used prophylactically to block furin-dependent cell killing by Pseudomonas exotoxin A. Biochemical analysis of the specificity of a bacterially expressed His- and FLAG-tagged α1-PDX (α1-PDX/hf) revealed the selectivity of the α1-PDX/hf reactive site loop for furin (Ki, 600 pM) but not for other proprotein convertase family members or other unrelated endoproteases. Kinetic studies show that α1-PDX/hf inhibits furin by a slow tight-binding mechanism characteristic of serpin molecules and functions as a suicide substrate inhibitor. Once bound to furin’s active site, α1-PDX/hf partitions with equal probability to undergo proteolysis by furin at the C-terminal side of the reactive center -Arg355-Ile-Pro-Arg358-↓ or to form a kinetically trapped SDS-stable complex with the enzyme. This partitioning between the complex-forming and proteolytic pathways contributes to the ability of α1-PDX/hf to differentially inhibit members of the proprotein convertase family. Finally, we propose a structural model of the α1-PDX-reactive site loop that explains the high degree of enzyme selectivity of this serpin and which can be used to generate small molecule furin inhibitors.
Resumo:
A dynamic capsid is critical to the events that shape the viral life cycle; events such as cell attachment, cell entry, and nucleic acid release demand a highly mobile viral surface. Protein mass mapping of the common cold virus, human rhinovirus 14 (HRV14), revealed both viral structural dynamics and the inhibition of such dynamics with an antiviral agent, WIN 52084. Viral capsid digestion fragments resulting from proteolytic time-course experiments provided structural information in good agreement with the HRV14 three-dimensional crystal structure. As expected, initial digestion fragments included peptides from the capsid protein VP1. This observation was expected because VP1 is the most external viral protein. Initial digestion fragments also included peptides belonging to VP4, the most internal capsid protein. The mass spectral results together with x-ray crystallography data provide information consistent with a “breathing” model of the viral capsid. Whereas the crystal structure of HRV14 shows VP4 to be the most internal capsid protein, mass spectral results show VP4 fragments to be among the first digestion fragments observed. Taken together this information demonstrates that VP4 is transiently exposed to the viral surface via viral breathing. Comparative digests of HRV14 in the presence and absence of WIN 52084 revealed a dramatic inhibition of digestion. These results indicate that the binding of the antiviral agent not only causes local conformational changes in the drug binding pocket but actually stabilizes the entire viral capsid against enzymatic degradation. Viral capsid mass mapping provides a fast and sensitive method for probing viral structural dynamics as well as providing a means for investigating antiviral drug efficacy.
Resumo:
Methionine aminopeptidase (MetAP) exists in two forms (type I and type II), both of which remove the N-terminal methionine from proteins. It previously has been shown that the type II enzyme is the molecular target of fumagillin and ovalicin, two epoxide-containing natural products that inhibit angiogenesis and suppress tumor growth. By using mass spectrometry, N-terminal sequence analysis, and electronic absorption spectroscopy we show that fumagillin and ovalicin covalently modify a conserved histidine residue in the active site of the MetAP from Escherichia coli, a type I enzyme. Because all of the key active site residues are conserved, it is likely that a similar modification occurs in the type II enzymes. This modification, by occluding the active site, may prevent the action of MetAP on proteins or peptides involved in angiogenesis. In addition, the results suggest that these compounds may be effective pharmacological agents against pathogenic and resistant forms of E. coli and other microorganisms.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents.
Resumo:
A novel fungal metabolite, apicidin [cyclo(N-O-methyl-l-tryptophanyl-l-isoleucinyl-d-pipecolinyl-l-2-amino-8-oxodecanoyl)], that exhibits potent, broad spectrum antiprotozoal activity in vitro against Apicomplexan parasites has been identified. It is also orally and parenterally active in vivo against Plasmodium berghei malaria in mice. Many Apicomplexan parasites cause serious, life-threatening human and animal diseases, such as malaria, cryptosporidiosis, toxoplasmosis, and coccidiosis, and new therapeutic agents are urgently needed. Apicidin’s antiparasitic activity appears to be due to low nanomolar inhibition of Apicomplexan histone deacetylase (HDA), which induces hyperacetylation of histones in treated parasites. The acetylation–deacetylation of histones is a thought to play a central role in transcriptional control in eukaryotic cells. Other known HDA inhibitors were also evaluated and found to possess antiparasitic activity, suggesting that HDA is an attractive target for the development of novel antiparasitic agents.
Resumo:
Reaction of the normal isomer of [B20H18]2− and the protected thiol anion, [SC(O)OC(CH3)3]−, produces an unexpected isomer of [B20H17SC(O)OC(CH3)3]4− directly and in good yield. The isomer produced under mild conditions is characterized by an apical–apical boron atom intercage connection as well as the location of the thiol substituent on an equatorial belt adjacent to the terminal boron apex. Although the formation of this isomer from nucleophilic attack of the normal isomer of [B20H18]2− has not been reported previously, the isomeric assignment has been unambiguously confirmed by one-dimensional and two-dimensional 11B NMR spectroscopy. Deprotection of the thiol substituent under acidic conditions produces a protonated intermediate, [B20H18SH]3−, which can be deprotonated with a suitable base to yield the desired product, [B20H17SH]4−. The sodium salt of the resulting [B20H17SH]4− ion has been encapsulated in small, unilamellar liposomes, which are capable of delivering their contents selectively to tumors in vivo, and investigated as a potential agent for boron neutron capture therapy. The biodistribution of boron was determined after intravenous injection of the liposomal suspension into BALB/c mice bearing EMT6 mammary adenocarcinoma. At low injected doses, the tumor boron concentration increased throughout the time-course experiment, resulting in a maximum observed boron concentration of 46.7 μg of B per g of tumor at 48 h and a tumor to blood boron ratio of 7.7. The boron concentration obtained in the tumor corresponds to 22.2% injected dose (i.d.) per g of tissue, a value analogous to the most promising polyhedral borane anions investigated for liposomal delivery and subsequent application in boron neutron capture therapy.
Resumo:
Interaction of diagnostic ultrasound with gas bodies produces a useful contrast effect in medical images, but the same interaction also represents a mechanism for bioeffects. Anesthetized hairless mice were scanned by using a 2.5-MHz transducer (610-ns pulses with 3.6-kHz repetition frequency and 61-Hz frame rate) after injection of Optison and Evans blue dye. Petechial hemorrhages (PHs) in intestine and abdominal muscle were counted 15 min after exposure to characterize capillary rupture, and Evans blue extravasation was evaluated in samples of muscle tissue. For 5 ml⋅kg-1 contrast agent and exposure to 10 alternating 10-s on and off periods, PH counts in muscle were approximately proportional to the square of peak negative pressure amplitude and were statistically significant above 0.64 MPa. PH counts in intestine and Evans blue extravasation into muscle tissue were significant above 1.0 MPa. The PH effect in muscle was proportional to contrast dose and was statistically significant for the lowest dose of 0.05 ml⋅kg-1. The effects decreased nearly to sham levels if the exposure was delayed 5 min. The PH effect in abdominal muscle was significant and statistically indistinguishable for uninterrupted 100-s exposure, 10-s exposure, 100 scans repeated at 1 Hz, and even for a single scan. The results confirms a previous report of PH induction by diagnostic ultrasound with contrast agent in mammalian skeletal muscle [Skyba, D. M., Price, R. J., Linka, A. Z., Skalak, T. C. & Kaul, S. (1998) Circulation 98, 290–293].
Resumo:
Aberrant blood vessel growth in the retina that underlies the pathology of proliferative diabetic retinopathy and retinopathy of prematurity is the result of the ischemia-driven disruption of the normally antiangiogenic environment of the retina. In this study, we show that a potent inhibitor of angiogenesis found naturally in the normal eye, pigment epithelium-derived growth factor (PEDF), inhibits such aberrant blood vessel growth in a murine model of ischemia-induced retinopathy. Inhibition was proportional to dose and systemic delivery of recombinant protein at daily doses as low as 2.2 mg/kg could prevent aberrant endothelial cells from crossing the inner limiting membrane. PEDF appeared to inhibit angiogenesis by causing apoptosis of activated endothelial cells, because it induced apoptosis in cultured endothelial cells and an 8-fold increase in apoptotic endothelial cells could be detected in situ when the ischemic retinas of PEDF-treated animals were compared with vehicle-treated controls. The ability of low doses of PEDF to curtail aberrant growth of ocular endothelial cells without overt harm to retinal morphology suggests that this natural protein may be beneficial in the treatment of a variety of retinal vasculopathies.
Resumo:
Transmissible spongiform encephalopathies, or prion diseases, are fatal degenerative disorders of the central nervous system that affect humans and animals. Prions are nonconventional infectious agents whose replication depends on the host prion protein (PrP). Transmission of prions to cultured cells has proved to be a particularly difficult task, and with a few exceptions, their experimental propagation relies on inoculation to laboratory animals. Here, we report on the development of a permanent cell line supporting propagation of natural sheep scrapie. This model was obtained by stable expression of a tetracycline-regulatable ovine PrP gene in a rabbit epithelial cell line. After exposure to scrapie agent, cultures were repeatedly found to accumulate high levels of abnormal PrP (PrPres). Cell extracts induced a scrapie-like disease in transgenic mice overexpressing ovine PrP. These cultures remained healthy and stably infected upon subpassaging. Such data show that (i) cultivated cells from a nonneuronal origin can efficiently replicate prions; and (ii) species barrier can be crossed ex vivo through the expression of a relevant PrP gene. This approach led to the ex vivo propagation of a natural transmissible spongiform encephalopathy agent (i.e., without previous experimental adaptation to rodents) and might be applied to human or bovine prions.
Resumo:
There is substantial scientific evidence to support the notion that bovine spongiform encephalopathy (BSE) has contaminated human beings, causing variant Creutzfeldt–Jakob disease (vCJD). This disease has raised concerns about the possibility of an iatrogenic secondary transmission to humans, because the biological properties of the primate-adapted BSE agent are unknown. We show that (i) BSE can be transmitted from primate to primate by intravenous route in 25 months, and (ii) an iatrogenic transmission of vCJD to humans could be readily recognized pathologically, whether it occurs by the central or peripheral route. Strain typing in mice demonstrates that the BSE agent adapts to macaques in the same way as it does to humans and confirms that the BSE agent is responsible for vCJD not only in the United Kingdom but also in France. The agent responsible for French iatrogenic growth hormone-linked CJD taken as a control is very different from vCJD but is similar to that found in one case of sporadic CJD and one sheep scrapie isolate. These data will be key in identifying the origin of human cases of prion disease, including accidental vCJD transmission, and could provide bases for vCJD risk assessment.
Resumo:
Members of hereditary nonpolyposis colon cancer (HNPCC) families harboring heterozygous germline mutations in the DNA mismatch repair genes hMSH2 or hMLH1 present with tumors generally two to three decades earlier than individuals with nonfamilial sporadic colon cancer. We searched for phenotypic features that might predispose heterozygous cells from HNPCC kindreds to malignant transformation. hMSH2+/− lymphoblastoid cell lines were found to be on average about 4-fold more tolerant than wild-type cells to killing by the methylating agent temozolomide, a phenotype that is invariably linked with impairment of the mismatch repair system. This finding was associated with an average 2-fold decrease of the steady-state level of hMSH2 protein in hMSH2+/− cell lines. In contrast, hMLH1+/− heterozygous cells were indistinguishable from normal controls in these assays. Thus, despite the fact that HNPCC families harboring mutations in hMSH2 or hMLH1 cannot be distinguished clinically, the early stages of the carcinogenic process in hMSH2 and hMLH1 mutation carriers may be different. Should hMSH2+/− colonocytes and lymphoblasts harbor a similar phenotype, the increased tolerance of the former to DNA-damaging agents present in the human colon may play a key role in the initiation of the carcinogenic process.
Resumo:
An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phase-sensitive electrophoresis, and the directionality of the bend has been determined as a compression of the minor helix groove. The magnitude of the resulting duplex bend was found to be dependent on the length of the polymeric linker in a fashion consistent with a simple geometric model. Data suggested that a 50-70 degrees bend was achieved by binding of the TFO chimera with the shortest linker span (18 rotatable bonds). Equilibrium analysis showed that, relative to a chimera which did not bend the duplex, the stability of the triple helix possessing a 50-70 degrees bend was reduced by less than 1 kcal/mol of that of the unbent complex. Based upon this similarity, it is proposed that duplex DNA may be much more flexible with respect to minor groove compression than previously assumed. It is shown that this unusual flexibility is consistent with recent quantitation of protein-induced minor groove bending.
Resumo:
Male Neopyrochroa flabellata have a natural affinity for cantharidin (Spanish fly). They are attracted to cantharidin baits in the field and feed on the compound if it is offered to them in the laboratory. Males that ingest cantharidin secrete cantharidin from a cephalic gland. Females sample secretion from this gland during courtship and mate preferentially with males that had fed on cantharidin. Cantharidin-unfed males can be rendered acceptable to females if cantharidin is added to their cephalic gland.
Resumo:
A human-derived strain of the agent of human granulocytic ehrlichiosis, a recently described emerging rickettsial disease, has been established by serial blood passage in mouse hosts. Larval deer ticks acquired infection by feeding upon such mice and efficiently transmitted the ehrlichiae after molting to nymphs, thereby demonstrating vector competence. The agent was detected by demonstrating Feulgen-positive inclusions in the salivary glands of the experimentally infected ticks and from field-derived adult deer ticks. White-footed mice from a field site infected laboratory-reared ticks with the agent of human granulocytic ehrlichiosis, suggesting that these rodents serve as reservoirs for ehrlichiae as well as for Lyme disease spirochetes and the piroplasm that causes human babesiosis. About 10% of host-seeking deer ticks were infected with ehrlichiae, and of these, 20% also contained spirochetes. Cotransmission of diverse pathogens by the aggressively human-biting deer tick may have a unique impact on public health in certain endemic sites.