40 resultados para Tuberculosis in animals.
Resumo:
Infectious diseases and malnutrition represent major burdens afflicting millions of people in developing countries. Both conditions affect individuals in industrialized nations, particularly the aged, the HIV-infected, and people with chronic diseases. While malnutrition is known to induce a state of immunodeficiency, the mechanisms responsible for compromised antimicrobial resistance in malnourished hosts remain obscure. In the present study, mice fed a 2% protein diet and developing protein calorie malnutrition, in contrast to well-nourished controls receiving a 20% protein diet, rapidly succumbed to infection with Mycobacterium tuberculosis. Malnourished mice exhibited a tissue-specific diminution in the expression of interferon γ, tumor necrosis factor α, and the inducible form of nitric oxide synthase in the lungs, but not the liver. The expression of these molecules critical to the production of mycobactericidal nitrogen oxides was depressed in malnourished animals in the lungs specifically at early times (<14 days) after infection. At later times, levels of expression became comparable to those in well-nourished controls, although the bacillary burden in the malnourished animals continued to rise. Nevertheless, urinary and serum nitrate contents, an index of total nitric oxide (NO) production in vivo, were not detectably diminished in malnourished, mycobacteria-infected mice. In contrast to the selective and early reduction of lymphokines and the inducible form of nitric oxide synthase in the lung, a marked diminution of the granulomatous reaction was observed in malnourished mice throughout the entire course of infection in all tissues examined (lungs, liver, and spleen). Remarkably, the progressively fatal course of tuberculosis observed in the malnourished mice could be reversed by restoring a full protein (20%) diet. The results indicate that protein calorie malnutrition selectively compromises several components of the cellular immune response that are important for containing and restricting tuberculous infection, and suggest that malnutrition-induced susceptibility to some infectious diseases can be reversed or ameliorated by nutritional intervention.
Resumo:
Objectives: To document the existence of drug resistance in a tuberculosis treatment programme that adheres strictly to the DOTS principles (directly observed treatment, short course) and to determine the extent of drug resistance in a prison setting in one of the republics of the former Soviet Union.
Resumo:
Objective: To determine whether preventive treatment for tuberculosis in adults infected with HIV reduces the frequency of tuberculosis and overall mortality.
Resumo:
Cytochrome P450 14α-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14α-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-Å crystal structures reported here for 4-phenylimidazole- and fluconazole-bound CYP51 from Mycobacterium tuberculosis (MTCYP51) are the first structures of an authentic P450 drug target. MTCYP51 exhibits the P450 fold with the exception of two striking differences—a bent I helix and an open conformation of BC loop—that define an active site-access channel running along the heme plane perpendicular to the direction observed for the substrate entry in P450BM3. Although a channel analogous to that in P450BM3 is evident also in MTCYP51, it is not open at the surface. The presence of two different channels, with one being open to the surface, suggests the possibility of conformationally regulated substrate-in/product-out openings in CYP51. Mapping mutations identified in Candida albicans azole-resistant isolates indicates that azole resistance in fungi develops in protein regions involved in orchestrating passage of CYP51 through different conformational stages along the catalytic cycle rather than in residues directly contacting fluconazole. These new structures provide a basis for rational design of new, more efficacious antifungal agents as well as insight into the molecular mechanism of P450 catalysis.
Resumo:
A tremendous wealth of data is accumulating on the variety and distribution of transposable elements (TEs) in natural populations. There is little doubt that TEs provide new genetic variation on a scale, and with a degree of sophistication, previously unimagined. There are many examples of mutations and other types of genetic variation associated with the activity of mobile elements. Mutant phenotypes range from subtle changes in tissue specificity to dramatic alterations in the development and organization of tissues and organs. Such changes can occur because of insertions in coding regions, but the more sophisticated TE-mediated changes are more often the result of insertions into 5′ flanking regions and introns. Here, TE-induced variation is viewed from three evolutionary perspectives that are not mutually exclusive. First, variation resulting from the intrinsic parasitic nature of TE activity is examined. Second, we describe possible coadaptations between elements and their hosts that appear to have evolved because of selection to reduce the deleterious effects of new insertions on host fitness. Finally, some possible cases are explored in which the capacity of TEs to generate variation has been exploited by their hosts. The number of well documented cases in which element sequences appear to confer useful traits on the host, although small, is growing rapidly.
Resumo:
Phylogenetic analyses of asymmetry variation offer a powerful tool for exploring the interplay between ontogeny and evolution because (i) conspicuous asymmetries exist in many higher metazoans with widely varying modes of development, (ii) patterns of bilateral variation within species may identify genetically and environmentally triggered asymmetries, and (iii) asymmetries arising at different times during development may be more sensitive to internal cytoplasmic inhomogeneities compared to external environmental stimuli. Using four broadly comparable asymmetry states (symmetry, antisymmetry, dextral, and sinistral), and two stages at which asymmetry appears developmentally (larval and postlarval), I evaluated relations between ontogenetic and phylogenetic patterns of asymmetry variation. Among 140 inferred phylogenetic transitions between asymmetry states, recorded from 11 classes in five phyla, directional asymmetry (dextral or sinistral) evolved directly from symmetrical ancestors proportionally more frequently among larval asymmetries. In contrast, antisymmetry, either as an end state or as a transitional stage preceding directional asymmetry, was confined primarily to postlarval asymmetries. The ontogenetic origin of asymmetry thus significantly influences its subsequent evolution. Furthermore, because antisymmetry typically signals an environmentally triggered asymmetry, the phylogenetic transition from antisymmetry to directional asymmetry suggests that many cases of laterally fixed asymmetries evolved via genetic assimilation.
Resumo:
The activation of plant defensive genes in leaves of tomato plants in response to herbivore damage or mechanical wounding is mediated by a mobile 18-amino acid polypeptide signal called systemin. Systemin is derived from a larger, 200-amino acid precursor called prosystemin, similar to polypeptide hormones and soluble growth factors in animals. Systemin activates a lipid-based signaling cascade, also analogous to signaling systems found in animals. In plants, linolenic acid is released from membranes and is converted to the oxylipins phytodienoic acid and jasmonic acid through the octadecanoid pathway. Plant oxylipins are structural analogs of animal prostaglandins which are derived from arachidonic acid in response to various signals, including polypeptide factors. Constitutive overexpression of the prosystemin gene in transgenic tomato plants resulted in the overproduction of prosystemin and the abnormal release of systemin, conferring a constitutive overproduction of several systemic wound-response proteins (SWRPs). The data indicate that systemin is a master signal for defense against attacking herbivores. The same defensive proteins induced by wounding are synthesized in response to oligosaccharide elicitors that are generated in leaf cells in response to pathogen attacks. Inhibitors of the octadecanoid pathway, and a mutation that interrupts this pathway, block the induction of SWRPs by wounding, systemin, and oligosaccharide elicitors, indicating that the octadecanoid pathway is essential for the activation of defense genes by all of these signals. The tomato mutant line that is functionally deficient in the octadecanoid pathway is highly susceptible to attacks by Manduca sexta larvae. The similarities between the defense signaling pathway in tomato leaves and those of the defense signaling pathways of macrophages and mast cells of animals suggests that both the plant and animal pathways may have evolved from a common ancestral origin.
Resumo:
The induction of arthritis in DBA/1 mice usually requires immunization with the antigen type II collagen emulsified with Mycobacterium tuberculosis in oil. Here we describe that interleukin 12 (IL-12) can replace mycobacteria and cause severe arthritis of DBA/1 mice when administered in combination with type II collagen. Immunization of DBA/1 mice with type II collagen emulsified in oil alone resulted in a weak immune response, and only a few animals (10-30%) developed arthritis. Administration of IL-12 for 5 days simultaneously with each immunization strongly enhanced the anti-type II collagen immune response. Collagen-specific interferon gamma (IFN-gamma) synthesis by ex vivo activated spleen cells was enhanced 3- to 10-fold. IFN-gamma was almost completely produced by CD4+ T cells. Furthermore, the production of collagen-specific IgG2a and IgG2b antibodies was upregulated 10- to 100-fold. As a consequence, the incidence of arthritis in the group of mice immunized with collagen plus IL-12 was very high (80-100%). The developing arthritis was severe, involving approximately 50% of all limbs with strongly increased footpad thickness in most cases. Furthermore, histological examination revealed massive, mainly polymorphonuclear cell infiltration, synovial hyperplasia, cartilage and bone destruction, as well as new bone formation. In many cases, this resulted in the complete loss of joint structure. Neutralization of IFN-gamma in vivo prevented the development of arthritis in collagen-immunized and IL-12-treated mice. In conclusion, our data show that in vivo administered IL-12 can profoundly upregulate a T helper I-type autoimmune response, resulting in severe joint disease in DBA/1 mice.
Resumo:
Little is known about the division of eukaryotic cell organelles and up to now neither in animals nor in plants has a gene product been shown to mediate this process. A cDNA encoding a homolog of the bacterial cell division protein FtsZ, an ancestral tubulin, was isolated from the eukaryote Physcomitrella patens and used to disrupt efficiently the genomic locus in this terrestrial seedless plant. Seven out of 51 transgenics obtained were knockout plants generated by homologous recombination; they were specifically impeded in plastid division with no detectable effect on mitochondrial division or plant morphology. Implications on the theory of endosymbiosis and on the use of reverse genetics in plants are discussed.
Resumo:
The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.
Resumo:
A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or “apicoplast,” is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investigate possible functions of the apicoplast, we sought to identify nuclear-encoded genes whose products are targeted to the apicoplast in Plasmodium and Toxoplasma. We describe here nuclear genes encoding ribosomal proteins S9 and L28 and the fatty acid biosynthetic enzymes acyl carrier protein (ACP), β-ketoacyl-ACP synthase III (FabH), and β-hydroxyacyl-ACP dehydratase (FabZ). These genes show high similarity to plastid homologues, and immunolocalization of S9 and ACP verifies that the proteins accumulate in the plastid. All the putatively apicoplast-targeted proteins bear N-terminal presequences consistent with plastid targeting, and the ACP presequence is shown to be sufficient to target a recombinant green fluorescent protein reporter to the apicoplast in transgenic T. gondii. Localization of ACP, and very probably FabH and FabZ, in the apicoplast implicates fatty acid biosynthesis as a likely function of the apicoplast. Moreover, inhibition of P. falciparum growth by thiolactomycin, an inhibitor of FabH, indicates a vital role for apicoplast fatty acid biosynthesis. Because the fatty acid biosynthesis genes identified here are of a plastid/bacterial type, and distinct from those of the equivalent pathway in animals, fatty acid biosynthesis is potentially an excellent target for therapeutics directed against malaria, toxoplasmosis, and other apicomplexan-mediated diseases.