73 resultados para TRYPTOPHAN SIDE-CHAINS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers of N-substituted glycines (“peptoids”) containing chiral centers at the α position of their side chains can form stable structures in solution. We studied a prototypical peptoid, consisting of five para-substituted (S)-N-(1-phenylethyl)glycine residues, by NMR spectroscopy. Multiple configurational isomers were observed, but because of extensive signal overlap, only the major isomer containing all cis-amide bonds was examined in detail. The NMR data for this molecule, in conjunction with previous CD spectroscopic results, indicate that the major species in methanol is a right-handed helix with cis-amide bonds. The periodicity of the helix is three residues per turn, with a pitch of ≈6 Å. This conformation is similar to that anticipated by computational studies of a chiral peptoid octamer. The helical repeat orients the amide bond chromophores in a manner consistent with the intensity of the CD signal exhibited by this molecule. Many other chiral polypeptoids have similar CD spectra, suggesting that a whole family of peptoids containing chiral side chains is capable of adopting this secondary structure motif. Taken together, our experimental and theoretical studies of the structural properties of chiral peptoids lay the groundwork for the rational design of more complex polypeptoid molecules, with a variety of applications, ranging from nanostructures to nonviral gene delivery systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several di- and tripeptides containing protected purine (adenine) and pyrimidine (thymine) residues on their side chains were synthesized. The parent amino acids alpha, alpha-dialkylated in a symmetrical manner. An effective coupling procedure was developed for these sterically hindered amino acids: the fluoren-9-ylmethyloxycarbonyl-protected amino acid was dehydrated to its oxazolinone form, which was coupled in good yields with amino esters in hot tetrachloroethane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli dihydrofolate reductase (DHFR; EC 1.5.1.3) contains five tryptophan residues that have been replaced with 6-19F-tryptophan. The 19F NMR assignments are known in the native, unliganded form and the unfolded form. We have used these assignments with stopped-flow 19F NMR spectroscopy to investigate the behavior of specific regions of the protein in real time during urea-induced unfolding. The NMR data show that within 1.5 sec most of the intensities of the native 19F resonances of the protein are lost but only a fraction (approximately 20%) of the intensities of the unfolded resonances appears. We postulate that the early disappearance of the native resonances indicates that most of the protein rapidly forms an intermediate in which the side chains have considerable mobility. Stopped-flow far-UV circular dichroism measurements indicate that this intermediate retains native-like secondary structure. Eighty percent of the intensities of the NMR resonances assigned to the individual tryptophans in the unfolded state appear with similar rate constants (k approximately 0.14 sec-1), consistent with the major phase of unfolding observed by stopped-flow circular dichroism (representing 80% of total amplitude). These data imply that after formation of the intermediate, which appears to represent an expanded structural form, all regions of the protein unfold at the same rate. Stopped-flow measurements of the fluorescence and circular dichroism changes associated with the urea-induced unfolding show a fast phase (half-time of about 1 sec) representing 20% of the total amplitude in addition to the slow phase mentioned above. The NMR data show that approximately 20% of the total intensity for each of the unfolded tryptophan resonances is present at 1.5 sec, indicating that these two phases may represent the complete unfolding of the two different populations of the native protein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ubiquitin conjugation is a signal for degradation of eukaryotic proteins by the 26S protease. Conjugation of a homopolymeric multiubiquitin chain to a substrate lysine residue results in 10-fold faster degradation than does conjugation of monoubiquitin, but the molecular basis of enhanced targeting by chains is unknown. We show that ubiquitin residues L8, I44, and V70 are critical for targeting. Mutation of pairs of these residues to alanine had little effect on attachment of ubiquitin to substrates but severely inhibited degradation of the resulting conjugates. The same mutations blocked the binding of chains to a specific subunit (S5a) of the regulatory complex of the 26S protease. The side chains implicated in this binding--L8, I44, and V70--form repeating patches on the chain surface. Thus, hydrophobic interactions between these patches and S5a apparently contribute to enhanced proteolytic targeting by multiubiquitin chains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an analysis that synthesizes information on the sequence, structure, and motifs of antigenic peptides, which previously appeared to be in conflict. Fourier analysis of T-cell antigenic peptides indicates a periodic variation in amino acid polarities of 3-3.6 residues per period, suggesting an amphipathic alpha-helical structure. However, the diffraction patterns of major histocompatibility complex (MHC) molecules indicate that their ligands are in an extended non-alpha-helical conformation. We present two mutually consistent structural explanations for the source of the alpha-helical periodicity, based on an observation that the side chains of MHC-bound peptides generally partition with hydrophobic (hydrophilic) side chains pointing into (out of) the cleft. First, an analysis of haplotype-dependent peptide motifs indicates that the locations of their defining residues tend to force a period 3-4 variation in hydrophobicity along the peptide sequence, in a manner consistent with the spacing of pockets in the MHC. Second, recent crystallographic determination of the structure of a peptide bound to a class II MHC molecule reveals an extended but regularly twisted peptide with a rotation angle of about 130 degrees. We show that similar structures with rotation angles of 100-130 degrees are energetically acceptable and also span the length of the MHC cleft. These results provide a sound physical chemical and structural basis for the existence of a haplotype-independent antigenic motif which can be particularly important in limiting the search time for antigenic peptides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein α subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) α subunit C-terminal undecapeptide Gtα(340–350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtα(340–350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an αL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325–346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor–G protein interface is demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have synthesized and characterized a family of structured oligo-N-substituted-glycines (peptoids) up to 36 residues in length by using an efficient solid-phase protocol to incorporate chemically diverse side chains in a sequence-specific fashion. We investigated polypeptoids containing side chains with a chiral center adjacent to the main chain nitrogen. Some of these sequences have stable secondary structure, despite the achirality of the polymer backbone and its lack of hydrogen bond donors. In both aqueous and organic solvents, peptoid oligomers as short as five residues give rise to CD spectra that strongly resemble those of peptide α-helices. Differential scanning calorimetry and CD measurements show that polypeptoid secondary structure is highly stable and that unfolding is reversible and cooperative. Thermodynamic parameters obtained for unfolding are similar to those obtained for the α-helix to coil transitions of peptides. This class of biomimetic polymers may enable the design of self-assembling macromolecules with novel structures and functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proprotein convertases are a family of at least seven calcium-dependent endoproteases that process a wide variety of precursor proteins in the secretory pathway. All members of this family possess an N-terminal proregion, a subtilisin-like catalytic module, and an additional downstream well-conserved region of ≈150 amino acid residues, the P domain, which is not found in any other subtilase. The pro and catalytic domains cannot be expressed in the absence of the P domains; their thermodynamic instability may be attributable to the presence of large numbers of negatively charged Glu and Asp side chains in the substrate binding region for recognition of multibasic residue cleavage sites. Based on secondary structure predictions, we here propose that the P domains consist of 8-stranded β-barrels with well-organized inner hydrophobic cores, and therefore are independently folded components of the proprotein convertases. We hypothesize further that the P domains are integrated through strong hydrophobic interactions with the catalytic domains, conferring structural stability and regulating the properties and activity of the convertases. A molecular model of these interdomain interactions is proposed in this report.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CD22 is a B cell-restricted glycoprotein involved in signal transduction and modulation of cellular activation. It is also an I-type lectin (now designated Siglec-2), whose extracellular domain can specifically recognize α2–6-linked sialic acid (Sia) residues. This activity is postulated to mediate intercellular adhesion and/or to act as a coreceptor in antigen-induced B cell activation. However, studies with recombinant CD22 indicate that the lectin function can be inactivated by expression of α2–6-linked Sia residues on the same cell surface. To explore whether this masking phenomenon affects native CD22 on B cells, we first developed a probe to detect the lectin activity of recombinant CD22 expressed on Chinese hamster ovary cells (which have no endogenous α2–6-linked Sia residues). This probe is inactive against CD22-positive B lymphoma cells and Epstein–Barr virus-transformed lymphoblasts which express high levels of α2–6-linked Sia residues. Enzymatic desialylation unmasks the CD22 lectin activity, indicating that endogenous Sia residues block the CD22 lectin-binding site. Truncation of the side chains of cell surface Sia residues by mild periodate oxidation (known to abrogate Sia recognition by CD22) also had this unmasking effect, indicating that the effects of desialylation are not due to a loss of negative charge. Normal resting B cells from human peripheral blood gave similar findings. However, the lectin is partially unmasked during in vitro activation of these cells. Thus, the lectin activity of CD22 is restricted by endogenous sialylation in resting B cells and may be transiently unmasked during in vivo activation, perhaps to modulate intercellular or intracellular interactions at this critical stage in the humoral response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The semiempirical PM3 method, calibrated against ab initio HF/6–31+G(d) theory, has been used to elucidate the reaction of 1,2-dichloroethane (DCE) with the carboxylate of Asp-124 at the active site of haloalkane dehalogenase of Xanthobacter autothropicus. Asp-124 and 13 other amino acid side chains that make up the active site cavity (Glu-56, Trp-125, Phe-128, Phe-172, Trp-175, Leu-179, Val-219, Phe-222, Pro-223, Val-226, Leu-262, Leu-263, and His-289) were included in the calculations. The three most significant observations of the present study are that: (i) the DCE substrate and Asp-124 carboxylate, in the reactive ES complex, are present as an ion-molecule complex with a structure similar to that seen in the gas-phase reaction of AcO− with DCE; (ii) the structures of the transition states in the gas-phase and enzymatic reaction are much the same where the structure formed at the active site is somewhat exploded; and (iii) the enthalpies in going from ground states to transition states in the enzymatic and gas-phase reactions differ by only a couple kcal/mol. The dehalogenase derives its catalytic power from: (i) bringing the electrophile and nucleophile together in a low-dielectric environment in an orientation that allows the reaction to occur without much structural reorganization; (ii) desolvation; and (iii) stabilizing the leaving chloride anion by Trp-125 and Trp-175 through hydrogen bonding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The residue environment in protein structures is studied with respect to the density of carbon (C), oxygen (O), and nitrogen (N) atoms within a certain distance (say 5 Å) of each residue. Two types of environments are evaluated: one based on side-chain atom contacts (abbreviated S-S) and the other based on all atom (side-chain + backbone) contacts (abbreviated A-A). Different atom counts are observed about nine-residue structural categories defined by three solvent accessibility levels and three secondary structure states. Among the structural categories, the S-S atom count ratios generally vary more than the A-A atom count ratios because of the fact that the backbone (O) and (N) atoms contribute equal counts. Secondary structure affects the (C) density for the A-A contacts whereas secondary structure has little influence on the (C) density for the S-S contacts. For S-S contacts, a greater density of (O) over (N) atom neighbors stands out in the environment of most amino acid types. By contrast, for A-A contacts, independent of the solvent accessibility levels, the ratio (O)/(N) is ≈1 in helical states, consistent with the geometry of α-helical residues whose side-chains tilt oppositely to the amino to carboxy α-helical axis. The highest ratio of neighbor (O)/(N) is achieved under solvent exposed conditions. This (O) vs. (N) prevalence is advantageous at the protein surface that generally exhibits an acid excess that helps to enhance protein solubility in the cell and to avoid nonspecific interactions with phosphate groups of DNA, RNA, and other plasma constituents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two mouse monoclonal anti-anti-idiotopic antibodies (anti-anti-Id, Ab3), AF14 and AF52, were prepared by immunizing BALB/c mice with rabbit polyclonal anti-idiotypic antibodies (anti-Id, Ab2) raised against antibody D1.3 (Ab1) specific for the antigen hen egg lysozyme. AF14 and AF52 react with an “internal image” monoclonal mouse anti-Id antibody E5.2 (Ab2), previously raised against D1.3, with affinity constants (1.0 × 109 M−1 and 2.4 × 107 M−1, respectively) usually observed in secondary responses against protein antigens. They also react with the antigen but with lower affinity (1.8 × 106 M−1 and 3.8 × 106 M−1). This pattern of affinities for the anti-Id and for the antigen also was displayed by the sera of the immunized mice. The amino acid sequences of AF14 and AF52 are very close to that of D1.3. In particular, the amino acid side chains that contribute to contacts with both antigen and anti-Id are largely conserved in AF14 and AF52 compared with D1.3. Therapeutic immunizations against different pathogenic antigens using anti-Id antibodies have been proposed. Our experiments show that a response to an anti-Id immunogen elicits anti-anti-Id antibodies that are optimized for binding the anti-Id antibodies rather than the antigen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal structure of Escherichia coli ornithine transcarbamoylase (OTCase, EC 2.1.3.3) complexed with the bisubstrate analog N-(phosphonacetyl)-l-ornithine (PALO) has been determined at 2.8-Å resolution. This research on the structure of a transcarbamoylase catalytic trimer with a substrate analog bound provides new insights into the linkages between substrate binding, protein–protein interactions, and conformational change. The structure was solved by molecular replacement with the Pseudomonas aeruginosa catabolic OTCase catalytic trimer (Villeret, V., Tricot, C., Stalon, V. & Dideberg, O. (1995) Proc. Natl. Acad. Sci. USA 92, 10762–10766; Protein Data Bank reference pdb 1otc) as the model and refined to a crystallographic R value of 21.3%. Each polypeptide chain folds into two domains, a carbamoyl phosphate binding domain and an l-ornithine binding domain. The bound inhibitor interacts with the side chains and/or backbone atoms of Lys-53, Ser-55, Thr-56, Arg-57, Thr-58, Arg-106, His-133, Asn-167, Asp-231, Met-236, Leu-274, Arg-319 as well as Gln-82 and Lys-86 from an adjacent chain. Comparison with the unligated P. aeruginosa catabolic OTCase structure indicates that binding of the substrate analog results in closure of the two domains of each chain. As in E. coli aspartate transcarbamoylase, the 240s loop undergoes the largest conformational change upon substrate binding. The clinical implications for human OTCase deficiency are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on the transmission of human (Hu) prions to transgenic (Tg) mice suggested that another molecule provisionally designated protein X participates in the formation of nascent scrapie isoform of prion protein (PrPSc). We report the identification of the site at which protein X binds to the cellular isoform of PrP (PrPC) using scrapie-infected mouse (Mo) neuroblastoma cells transfected with chimeric Hu/MoPrP genes even though protein X has not yet been isolated. Substitution of a Hu residue at position 214 or 218 prevented PrPSc formation. The side chains of these residues protrude from the same surface of the C-terminal α-helix and form a discontinuous epitope with residues 167 and 171 in an adjacent loop. Substitution of a basic residue at positions 167, 171, or 218 also prevented PrPSc formation: at a mechanistic level, these mutant PrPs appear to act as “dominant negatives” by binding protein X and rendering it unavailable for prion propagation. Our findings seem to explain the protective effects of basic polymorphic residues in PrP of humans and sheep and suggest therapeutic and prophylactic approaches to prion diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcal α-toxin is a 293-residue, single-chain polypeptide that spontaneously assembles into a heptameric pore in target cell membranes. To identify the pore-forming domain, substitution mutants have been produced in which single cysteine residues were introduced throughout the toxin molecule. By attaching the environmentally sensitive dye acrylodan to the sulfhydryl groups, the environment of individual amino acid side chains could be probed. In liposomes, a single 23-amino acid sequence (residues 118–140) was found to move from a polar to a nonpolar environment, indicating that this sequence forms the walls of the pore. However, periodicity in side chain environmental polarity could not be detected in the liposomal system. In the present study, the fluorimetric analyses were extended to physiological target cells. With susceptible cells such as rabbit erythrocytes and human lymphocytes, the 23 central amino acids 118–140 were again found to insert into the membrane; in contrast to the previous study with liposomes, the expected periodicity was now detected. Thus, every other residue in the sequence 126–140 entered a nonpolar environment in a striking display of an amphipathic transmembrane β-barrel. In contrast, human granulocytes were found to bind α-toxin to a similar extent as lymphocytes, but the heptamers forming on these cells failed to insert their pore-forming domain into the membrane. As a consequence, nonfunctional heptamers assembled and the cells remained viable. The data resolve the molecular organization of a pore-forming toxin domain in living cells and reveal that resistant cells can prevent insertion of the functional domain into the bilayer.