48 resultados para Subtelomeric Deletion
Resumo:
At high concentrations, the tubule poison paclitaxel is able to kill cancer cells that express Bcl-2; it inhibits the antiapoptotic activity of Bcl-2 by inducing its phosphorylation. To localize the site on Bcl-2 regulated by phosphorylation, mutant forms of Bcl-2 were constructed. Mutant forms of Bcl-2 with an alteration in serine at amino acid 70 (S70A) or with deletion of a 60-aa loop region between the α1 and α2 helices (Δloop Bcl-2, which also deletes amino acid 70) were unable to be phosphorylated by paclitaxel treatment of MDA-MB-231 cells into which the genes for the mutant proteins were transfected. The Δloop mutant completely inhibited paclitaxel-induced apoptosis. In cells expressing the S70A mutant, paclitaxel induced about one-third the level of apoptosis seen with wild-type Bcl-2. To evaluate the role of mitogen-activated protein kinases (MAPKs) in Bcl-2 phosphorylation, the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was examined. Paclitaxel-induced apoptosis was associated with phosphorylation of Bcl-2 and activation of ERK and JNK MAPKs. If JNK activation was blocked by transfections with either a stress-activated protein kinase kinase dominant-negative (K→R) gene (which prevents the activation of a kinase upstream of JNK) or MAPK phosphatase-1 gene (which dephosphorylates and inactivates JNK), Bcl-2 phosphorylation did not occur, and the cells were not killed by paclitaxel. By contrast, neither an ERK inhibitor (PD098059) nor p38 inhibitors (SB203580 and SB202190) had an effect on Bcl-2 phosphorylation. Thus, our data show that the antiapoptotic effects of Bcl-2 can be overcome by phosphorylation of Ser-70; forms of Bcl-2 lacking the loop region are much more effective at preventing apoptosis than wild-type Bcl-2 because they cannot be phosphorylated. JNK, but not ERK or p38 MAPK, appear to be involved in the phosphorylation of Bcl-2 induced by paclitaxel.
Resumo:
We have identified the mutation responsible for the autosomal recessive wasted (wst) mutation of the mouse. Wasted mice are characterized by wasting and neurological and immunological abnormalities starting at 21 days after birth; they die by 28 days. A deletion of 15.8 kb in wasted mice abolishes expression of a gene called Eef1a2, encoding a protein that is 92% identical at the amino acid level to the translation elongation factor EF1α (locus Eef1a). We have found no evidence for the involvement of another gene in this deletion. Expression of Eef1a2 is reciprocal with that of Eef1a. Expression of Eef1a2 takes over from Eef1a in heart and muscle at precisely the time at which the wasted phenotype becomes manifest. These data suggest that there are tissue-specific forms of the translation elongation apparatus essential for postnatal survival in the mouse.
Resumo:
To investigate the role of complement protein factor B (Bf) and alternative pathway activity in vivo, and to test the hypothesized potential genetic lethal effect of Bf deficiency, the murine Bf gene was interrupted by exchange of exon 3 through exon 7 (including the factor D cleaving site) with the neor gene. Mice heterozygous for the targeted Bf allele were interbred, yielding Bf-deficient offspring after the F1 generation at a frequency suggesting that Bf deficiency alone has no major effect on fertility or fetal development. However, in the context of one or more genes derived from the 129 mouse strain, offspring homozygous for Bf deficiency were generated at less than expected numbers (P = 0.012). Bf-deficient mice showed no gross phenotypic difference from wild-type littermates. Sera from Bf-deficient mice lacked detectable alternative complement pathway activity; purified mouse Bf overcame the deficit. Classical pathway-dependent total hemolytic activity was lower in Bf-deficient than wild-type mice, possibly reflecting loss of the alternative pathway amplification loop. Lymphoid organ structure and IgG1 antibody response to a T-dependent antigen appeared normal in Bf-deficient mice. Sensitivity to lethal endotoxic shock was not significantly altered in Bf-deficient mice. Thus, deficiency of Bf and alternative complement activation pathway led to a less dramatic phenotype than expected. Nevertheless, these mice provide an excellent model for the assessment of the role of Bf and the alternative pathway in host defense and other functions in vivo.
Resumo:
Werner syndrome (WS) is an autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases. The gene responsible for WS encodes a member of the RecQ-like subfamily of DNA helicases. Here we show that its murine homologue maps to murine chromosome 8 in a region syntenic with the human WRN gene. We have deleted a segment of this gene and created Wrn-deficient embryonic stem (ES) cells and WS mice. While displaying reduced embryonic survival, live-born WS mice otherwise appear normal during their first year of life. Nonetheless, although several DNA repair systems are apparently intact in homozygous WS ES cells, such cells display a higher mutation rate and are significantly more sensitive to topoisomerase inhibitors (especially camptothecin) than are wild-type ES cells. Furthermore, mouse embryo fibroblasts derived from homozygous WS embryos show premature loss of proliferative capacity. At the molecular level, wild-type, but not mutant, WS protein copurifies through a series of centrifugation and chromatography steps with a multiprotein DNA replication complex.
Resumo:
In mammalian muscle a postnatal switch in functional properties of neuromuscular transmission occurs when miniature end plate currents become shorter and the conductance and Ca2+ permeability of end plate channels increases. These changes are due to replacement during early neonatal development of the γ-subunit of the fetal acetylcholine receptor (AChR) by the ɛ-subunit. The long-term functional consequences of this switch for neuromuscular transmission and motor behavior of the animal remained elusive. We report that deletion of the ɛ-subunit gene caused in homozygous mutant mice the persistence of γ-subunit gene expression in juvenile and adult animals. Neuromuscular transmission in these animals is based on fetal type AChRs present in the end plate at reduced density. Impaired neuromuscular transmission, progressive muscle weakness, and atrophy caused premature death 2 to 3 months after birth. The results demonstrate that postnatal incorporation into the end plate of ɛ-subunit containing AChRs is essential for normal development of skeletal muscle.
Resumo:
It has previously been reported that 1,N6-ethenoadenine (ɛA), deaminated adenine (hypoxanthine, Hx), and 7,8-dihydro-8-oxoguanine (8-oxoG), but not 3,N4-ethenocytosine (ɛC), are released from DNA in vitro by the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG). To assess the potential contribution of APNG to the repair of each of these mutagenic lesions in vivo, we have used cell-free extracts of tissues from APNG-null mutant mice and wild-type controls. The ability of these extracts to cleave defined oligomers containing a single modified base was determined. The results showed that both testes and liver cells of these knockout mice completely lacked activity toward oligonucleotides containing ɛA and Hx, but retained wild-type levels of activity for ɛC and 8-oxoG. These findings indicate that (i) the previously identified ɛA-DNA glycosylase and Hx-DNA glycosylase activities are functions of APNG; (ii) the two structurally closely related mutagenic adducts ɛA and ɛC are repaired by separate gene products; and (iii) APNG does not contribute detectably to the repair of 8-oxoG.
Resumo:
Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.
Resumo:
The biosynthesis of DIMBOA, a pesticidal secondary metabolite of maize, branches off the tryptophan pathway. We have previously demonstrated that indole is the last intermediate common to both the tryptophan and hydroxamic acid pathways. The earliest discovered mutant in the DIMBOA pathway, bxbx (benzoxazineless), is deficient in the production of DIMBOA and related compounds. This paper presents evidence that a gene identified by Kramer and Koziel [Kramer, V. C. & Koziel, M. G. (1995) Plant Mol. Biol. 27, 1183–1188] as maize tryptophan synthase α (TSA) is the site of the genetic lesion in the DIMBOA-deficient mutant maize line bxbx. We demonstrate that the TSA gene has sustained a 924-bp deletion in bxbx compared with its counterpart in wild-type maize. We report that the TSA gene maps to the same location as the bxbx mutation, on the short arm of chromosome 4. We present evidence that the very early and very high level of expression of TSA corresponds to the timing and level of DIMBOA biosynthesis but is strikingly different from the expression of the maize tryptophan synthase β (TSB) genes. We show that feeding indole to bxbx seedlings restores their ability to synthesize DIMBOA. We conclude that the maize enzyme initially named tryptophan synthase α in fact is a DIMBOA biosynthetic enzyme, and we propose that it be renamed indole synthase. This work confirms and enlarges upon the findings of Frey et al. [Frey, M. Chomet, P., Glawischniq, E., Stettner, C., Grün, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R. B., Briggs, S. P., Simcox, K. & Gierl, A. (1997) Science 277, 696–699], which appeared while the present paper was in review.
Resumo:
The hypothesis that chromosomal fragile sites may be “weak links” that result in hot spots for cancer-specific chromosome rearrangements was supported by the discovery that numerous cancer cell homozygous deletions and a familial translocation map within the FHIT gene, which encompasses the common fragile site, FRA3B. Sequence analysis of 276 kb of the FRA3B/FHIT locus and 22 associated cancer cell deletion endpoints shows that this locus is a frequent target of homologous recombination between long interspersed nuclear element sequences resulting in FHIT gene internal deletions, probably as a result of carcinogen-induced damage at FRA3B fragile sites.
Resumo:
We have generated null mutant mice that lack expression of all isoforms encoded by the trkC locus. These mice display a behavioral phenotype characterized by a loss of proprioceptive neurons. Neuronal counts of sensory ganglia in the trkC mutant mice reveal less severe losses than those in NT-3 null mutant mice, strongly suggesting that NT-3, in vivo, may signal through receptors other than trkC. Mice lacking either NT-3 or all trkC receptor isoforms die in the early postnatal period. Histological examination of trkC-deficient mice reveals severe cardiac defects such as atrial and ventricular septal defects, and valvular defects including pulmonic stenosis. Formation of these structures during development is dependent on cardiac neural crest function. The similarities in cardiac defects observed in the trkC and NT-3 null mutant mice indicate that the trkC receptor mediates most NT-3 effects on the cardiac neural crest.
Resumo:
Neuronal nitric oxide synthase (nNOS) generates NO in neurons, and heme-oxygenase-2 (HO-2) synthesizes carbon monoxide (CO). We have evaluated the roles of NO and CO in intestinal neurotransmission using mice with targeted deletions of nNOS or HO-2. Immunohistochemical analysis demonstrated colocalization of nNOS and HO-2 in myenteric ganglia. Nonadrenergic noncholinergic relaxation and cyclic guanosine 3′,5′ monophosphate elevations evoked by electrical field stimulation were diminished markedly in both nNOSΔ/Δ and HO-2Δ/Δ mice. In wild-type mice, NOS inhibitors and HO inhibitors partially inhibited nonadrenergic noncholinergic relaxation. In nNOSΔ/Δ animals, NOS inhibitors selectively lost their efficacy, and HO inhibitors were inactive in HO-2Δ/Δ animals.
Resumo:
The yeast Saccharomyces cerevisiae has a limited life-span, which is measured by the number of divisions that individual cells complete. Among the many changes that occur as yeasts age are alterations in chromatin-dependent transcriptional silencing. We have genetically manipulated histone deacetylases to modify chromatin, and we have examined the effect on yeast longevity. Deletion of the histone deacetylase gene RPD3 extended life-span. Its effects on chromatin functional state were evidenced by enhanced silencing at the three known heterochromatic regions of the genome, the silent mating type (HM), subtelomeric, and rDNA loci, which occurred even in the absence of SIR3. Similarly, the effect of the rpd3Δ on life-span did not depend on an intact Sir silencing complex. In fact, deletion of SIR3 itself had little effect on life-span, although it markedly accelerated the increase in cell generation time that is observed during yeast aging. Deletion of HDA1, another histone deacetylase gene, did not result in life-span extension, unless it was combined with deletion of SIR3. The hda1Δ sir3Δ resulted in an increase in silencing, but only at the rDNA locus. Deletion of RPD3 suppressed the loss of silencing in rDNA in a sir2 mutant; however, the silencing did not reach the level found in the rpd3Δ single mutant, and RPD3 deletion did not overcome the life-span shortening seen in the sir2 mutant. Deletion of both RPD3 and HDA1 caused a decrease in life-span, which resulted from a substantial increase in initial mortality of the population. The expression of both of these genes declines with age, providing one possible explanation for the increase in mortality during the life-span. Our results are consistent with the loss of rDNA silencing leading to aging in yeast. The functions of RPD3 and HDA1 do not overlap entirely. RPD3 exerts its effect on chromatin at additional sites in the genome, raising the possibility that events at loci other than rDNA play a role in the aging process.
Resumo:
The rd7 mouse, an animal model for hereditary retinal degeneration, has some characteristics similar to human flecked retinal disorders. Here we report the identification of a deletion in a photoreceptor-specific nuclear receptor (mPNR) mRNA that is responsible for hereditary retinal dysplasia and degeneration in the rd7 mouse. mPNR was isolated from a pool of photoreceptor-specific cDNAs originally created by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. Localization of the gene corresponding to mPNR to mouse Chr 9 near the rd7 locus made it a candidate for the site of the rd7 mutation. Northern analysis of total RNA isolated from rd7 mouse retinas revealed no detectable signal after hybridization with the mPNR cDNA probe. However, with reverse transcription–PCR, we were able to amplify different fragments of mPNR from rd7 retinal RNA and to sequence them directly. We found a 380-nt deletion in the coding region of the rd7 mPNR message that creates a frame shift and produces a premature stop codon. This deletion accounts for more than 32% of the normal protein and eliminates a portion of the DNA-binding domain. In addition, it may result in the rapid degradation of the rd7 mPNR message by the nonsense-mediated decay pathway, preventing the synthesis of the corresponding protein. Our findings demonstrate that mPNR expression is critical for the normal development and function of the photoreceptor cells.
Resumo:
Nitric oxide (NO) and carbon monoxide (CO) seem to be neurotransmitters in the brain. The colocalization of their respective biosynthetic enzymes, neuronal NO synthase (nNOS) and heme oxygenase-2 (HO2), in enteric neurons and altered intestinal function in mice with genomic deletion of the enzymes (nNOSΔ/Δ and HO2Δ/Δ) suggest neurotransmitter roles for NO and CO in the enteric nervous system. We now establish that NO and CO are both neurotransmitters that interact as cotransmitters. Small intestinal smooth muscle cells from nNOSΔ/Δ and HO2Δ/Δ mice are depolarized, with apparent additive effects in the double knockouts (HO2Δ/Δ/nNOSΔ/Δ). Muscle relaxation and inhibitory neurotransmission are reduced in the mutant mice. In HO2Δ/Δ preparations, responses to electrical field stimulation are nearly abolished despite persistent nNOS expression, whereas exogenous CO restores normal responses, indicating that the NO system does not function in the absence of CO generation.