53 resultados para Reporter genes


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthesis of mouse metallothionein (MT)-I and MT-II is transcriptionally induced by the synthetic glucocorticoid, dexamethasone (DEX) or both in vivo as well as in numerous cell lines. However, the location(s) of a glucocorticoid response element (GRE) has not been described. The observation that a marked MT-I gene, as well as heterologous genes, when placed in the context of 17 kb of flanking sequence from the MT locus, are inducible by DEX and lipopolysaccharide in transgenic mice renewed the search for the GRE. Analysis of a series of deletion constructs from this 17-kb region in cultured cells identified a single 455-bp region that conferred DEX induction on a reporter gene. This 455-bp region contains two GREs that bind to the glucocorticoid receptor as assessed by gel mobility shift. Deletion of this fragment from the 17-kb flanking region eliminates the DEX responsiveness of reporter genes. The two GREs, which are located ≈1 kb upstream of the MT-II gene and ≈7 kb upstream of the MT-I gene, are necessary for induction of both genes and can function independently of elements within the proximal promoter region of either gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding nuclear receptor signaling in vivo would be facilitated by an efficient methodology to determine where a nuclear receptor is active. Herein, we present a feedback-inducible expression system in transgenic mice to detect activated nuclear receptor effector proteins by using an inducible reporter gene. With this approach, reporter gene induction is not limited to a particular tissue, and, thus, this approach provides the opportunity for whole-animal screens. Furthermore, the effector and reporter genes are combined to generate a single strain of transgenic mice, which enables direct and rapid analysis of the offspring. The system was applied to localize sites where the retinoic acid receptor ligand-binding domain is activated in vivo. The results identify previously discovered sources of retinoids in the embryo and indicate the existence of previously undiscovered regions of retinoic acid receptor signaling in vivo. Notably, the feedback-inducible nuclear-receptor-driven assay, combined with an independent in vitro assay, provides evidence for a site of retinoid synthesis in the isthmic mesenchyme. These data illustrate the potential of feedback-inducible nuclear-receptor-driven analyses for assessing in vivo activation patterns of nuclear receptors and for analyzing pharmacological properties of natural and synthetic ligands of potential therapeutic value.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We are developing quantitative assays to repeatedly and noninvasively image expression of reporter genes in living animals, using positron emission tomography (PET). We synthesized positron-emitting 8-[18F]fluoroganciclovir (FGCV) and demonstrated that this compound is a substrate for the herpes simplex virus 1 thymidine kinase enzyme (HSV1-TK). Using positron-emitting FGCV as a PET reporter probe, we imaged adenovirus-directed hepatic expression of the HSV1-tk reporter gene in living mice. There is a significant positive correlation between the percent injected dose of FGCV retained per gram of liver and the levels of hepatic HSV1-tk reporter gene expression (r2 > 0.80). Over a similar range of HSV1-tk expression in vivo, the percent injected dose retained per gram of liver was 0–23% for ganciclovir and 0–3% for FGCV. Repeated, noninvasive, and quantitative imaging of PET reporter gene expression should be a valuable tool for studies of human gene therapy, of organ/cell transplantation, and of both environmental and behavioral modulation of gene expression in transgenic mice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cis-regulatory systems that control developmental expression of two sea urchin genes have been subjected to detailed functional analysis. Both systems are modular in organization: specific, separable fragments of the cis-regulatory DNA each containing multiple transcription factor target sites execute particular regulatory subfunctions when associated with reporter genes and introduced into the embryo. The studies summarized here were carried out on the CyIIIa gene, expressed in the embryonic aboral ectoderm and on the Endo16 gene, expressed in the embryonic vegetal plate, archenteron, and then midgut. The regulatory systems of both genes include modules that control particular aspects of temporal and spatial expression, and in both the territorial boundaries of expression depend on a combination of negative and positive functions. In both genes different regulatory modules control early and late embryonic expression. Modular cis-regulatory organization is widespread in developmentally regulated genes, and we present a tabular summary that includes many examples from mouse and Drosophila. We regard cis-regulatory modules as units of developmental transcription control, and also of evolution, in the assembly of transcription control systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

p48 protein is an integral component of the multimeric interferon (IFN)-regulated transcription factor, ISGF3. We have shown earlier that this gene is regulated by a novel IFN-γ-regulated element. In addition to the IFN-regulated element, a myc–max binding site is also present in this promoter. In this investigation we have studied the role of this site in the regulation of the p48 gene. In serum-induced quiescent cells Myc up-regulated the expression of p48 mRNA. We show that the protooncogene Myc regulates the expression of p48 through the element CACGTG. Mutations in this motif abolish Myc-inducibility of the reporter genes carrying p48 promoter elements. Purified Myc and Max proteins interact with the Myc-stimulated element of the p48 promoter. We also show that cells lacking p48 expression are highly susceptible to the cytocidal action of anticancer drugs. Taken together these data suggest that p48 may function as an anti-stress cell survival factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Development of in utero gene transfer approaches may provide therapies for genetic disorders with perinatal morbidity. In hemophilia A, prenatal and postnatal bleeding may be catastrophic, and modest increments in factor VIII (FVIII) activity are therapeutic. We performed transuterine i.p. gene transfer at day 15 of gestation in a murine model of hemophilia A. Normal, carrier (XHX), and FVIII-deficient (XHY and XHXH) fetuses injected with adenoviral vectors carrying luciferase or β-galactosidase reporter genes showed high-level gene expression with 91% fetal survival. The live-born rates of normal and FVIII-deficient animals injected in utero with adenovirus murine FVIII (3.3 × 105 plaque-forming units) was 87%. FVIII activity in plasma was 50.7 ± 10.5% of normal levels at day 2 of life, 7.2 ± 2.2% by day 15 of life, and no longer detectable at day 21 of life in hemophilic animals. Injection of higher doses of murine FVIII adenovirus at embryonic day 15 produced supranormal levels of FVIII activity in the neonatal period. PCR analysis identified viral genomes primarily in the liver, intestine, and spleen, although adenoviral DNA was detected in distal tissues when higher doses of adenovirus were administered. These studies show that transuterine i.p. injection of adenoviral vectors produces therapeutic levels of circulating FVIII throughout the neonatal period. The future development of efficient and persisting vectors that produce long-term gene expression may allow for in utero correction of genetic diseases originating in the fetal liver, hematopoietic stem cells, as well as other tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small ligand–receptor interactions underlie many fundamental processes in biology and form the basis for pharmacological intervention of human diseases in medicine. We report herein a genetic system, named the yeast three-hybrid system, for detecting ligand–receptor interactions in vivo. This system is adapted from the yeast two-hybrid system with which a third synthetic hybrid ligand is combined. The feasibility of this system was demonstrated using as the hybrid ligand a heterodimer of covalently linked dexamethasone and FK506. Yeast expressing fusion proteins of the hormone binding domain of the rat glucocorticoid receptor fused to the LexA DNA-binding domain and of FKBP12 fused to a transcriptional activation domain activated reporter genes when plated on medium containing the dexamethasone–FK506 heterodimer. The reporter gene activation is completely abrogated in a competitive manner by the presence of excess FK506. Using this system, we screened a Jurkat cDNA library fused to the transcriptional activation domain in yeast expressing the hormone binding domain of rat glucocorticoid receptor–LexA DNA binding domain fusion protein in the presence of dexamethasone–FK506 heterodimer. We isolated overlapping clones of human FKBP12. These results demonstrate that the three-hybrid system can be used to discover receptors for small ligands and to screen for new ligands to known receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developmental and physiological responses are regulated by light throughout the entire life cycle of higher plants. To sense changes in the light environment, plants have developed various photoreceptors, including the red/far-red light-absorbing phytochromes and blue light-absorbing cryptochromes. A wide variety of physiological responses, including most light responses, also are modulated by circadian rhythms that are generated by an endogenous oscillator, the circadian clock. To provide information on local time, circadian clocks are synchronized and entrained by environmental time cues, of which light is among the most important. Light-driven entrainment of the Arabidopsis circadian clock has been shown to be mediated by phytochrome A (phyA), phytochrome B (phyB), and cryptochromes 1 and 2, thus affirming the roles of these photoreceptors as input regulators to the plant circadian clock. Here we show that the expression of PHYB∷LUC reporter genes containing the promoter and 5′ untranslated region of the tobacco NtPHYB1 or Arabidopsis AtPHYB genes fused to the luciferase (LUC) gene exhibit robust circadian oscillations in transgenic plants. We demonstrate that the abundance of PHYB RNA retains this circadian regulation and use a PHYB∷Luc fusion protein to show that the rate of PHYB synthesis is also rhythmic. The abundance of bulk PHYB protein, however, exhibits only weak circadian rhythmicity, if any. These data suggest that photoreceptor gene expression patterns may be significant in the daily regulation of plant physiology and indicate an unexpectedly intimate relationship between the components of the input pathway and the putative circadian clock mechanism in higher plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficient expression of therapeutic genes in target cells or tissues is an important component of efficient and safe gene therapy. Utilizing regulatory elements from the human cytokeratin 18 (K18) gene, including 5′ genomic sequences and one of its introns, we have developed a novel expression cassette that can efficiently express reporter genes, as well as the human cystic fibrosis transmembrane conductance regulator (CFTR) gene, in cultured lung epithelial cells. CFTR transcripts expressed from the native K18 enhancer/promoter include two alternative splicing products, due to the activation of two cryptic splice sites in the CFTR coding region. Modification of the K18 intron and CFTR cDNA sequences eliminated the cryptic splice sites without changing the CFTR amino acid sequence, and led to enhanced CFTR mRNA and protein expression as well as biological function. Transgenic expression analysis in mice showed that the modified expression cassette can direct efficient and epithelium-specific expression of the Escherichia coli LacZ gene in the airways of fetal lungs, with no detectable expression in lung fibroblasts or endothelial cells. This is the first expression cassette which selectively directs lung transgene expression for CFTR gene therapy to airway epithelia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alveolar rhabdomyosarcoma (ARMS) cells often harbor one of two unique chromosomal translocations, either t(2;13)(q35;q14) or t(1;13)(p36;q14). The chimeric proteins expressed from these rearrangements, PAX3-FKHR and PAX7-FKHR, respectively, are potent transcriptional activators. In an effort to exploit these unique cancer-specific molecules to achieve ARMS-specific expression of therapeutic genes, we have studied the expression of a minimal promoter linked to six copies of a PAX3 DNA binding site, prs-9. In transient transfections, expression of the prs-9-regulated reporter genes was ≈250-fold higher than expression of genes lacking the prs-9 sequences in cell lines derived from ARMS, but remained at or below baseline levels in other cells. High expression of these prs-9-regulated genes was also observed in a cancer cell line that lacks t(2;13) but was stably transfected with a plasmid expressing PAX3-FKHR. Transfection of a plasmid containing the diphtheria toxin A chain gene regulated by prs-9 sequences (pA3–6PED) was selectively cytotoxic for PAX3-FKHR-expressing cells. This was shown by inhibition of gene expression from cotransfected plasmids and by direct cytotoxicity after transfected cells were isolated by cell sorting. Gene transfer of pA3–6PED may thus be useful as a cancer-specific treatment strategy for t(2;13)- or t(1;13)-positive ARMS. Furthermore, gene transfer of fusion protein-regulated toxin genes might also be applied to the treatment of other cancers that harbor cancer-specific chromosomal translocations involving transcription factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although silencing is a significant form of transcriptional regulation, the functional and mechanistic limits of its conservation have not yet been established. We have identified the Schizosaccharomyces pombe hst4+ gene as a member of the SIR2/HST silencing gene family that is defined in organisms ranging from bacteria to humans. hst4Δ mutants grow more slowly than wild-type cells and have abnormal morphology and fragmented DNA. Mutant strains show decreased silencing of reporter genes at both telomeres and centromeres. hst4+ appears to be important for centromere function as well because mutants have elevated chromosome-loss rates and are sensitive to a microtubule-destabilizing drug. Consistent with a role in chromatin structure, Hst4p localizes to the nucleus and appears concentrated in the nucleolus. hst4Δ mutant phenotypes, including growth and silencing phenotypes, are similar to those of the Saccharomyces cerevisiae HSTs, and at a molecular level, hst4+ is most similar to HST4. Furthermore, hst4+ is a functional homologue of S. cerevisiae HST3 and HST4 in that overexpression of hst4+ rescues the temperature-sensitivity and telomeric silencing defects of an hst3Δ hst4Δ double mutant. These results together demonstrate that a SIR-like silencing mechanism is conserved in the distantly related yeasts and is likely to be found in other organisms from prokaryotes to mammals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transcriptional activation potential of proteins can be assayed in chimeras containing a heterologous DNA-binding domain that mediates their recruitment to reporter genes. This approach has been widely used in yeast and in transient mammalian cell assays. Here, we applied it to assay the transactivation potential of proteins in transgenic Drosophila embryos. We found that a chimera between the DNA-binding bacterial LexA protein and the transactivation domain from yeast GAL4 behaved as a potent synthetic activator in all embryonic tissues. In contrast, a LexA chimera containing Drosophila Fos (Dfos) required an unexpected degree of context to function as a transcriptional activator. We provide evidence to suggest that this context is provided by Djun and Mad (a Drosophila Smad), and that these partner factors need to be activated by signaling from Jun N-terminal kinase and decapentaplegic, respectively. Because Dfos behaves as an autonomous transcriptional activator in more artificial assays systems, our data suggest that context-dependence of transcription factors may be more prevalent than previously thought.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed a strategy for the identification of peptides able to functionally replace a zinc finger domain in a transcription factor. This strategy could have important ramifications for basic research on gene regulation and for the development of therapeutic agents. In this study in yeast, we expressed chimeric proteins that included a random peptide combinatorial library in association with two zinc finger domains and a transactivating domain. The library was screened for chimeric proteins capable of activating transcription from a target sequence in the upstream regulatory regions of selectable or reporter genes. In a screen of approximately 1.5 × 107 transformants we identified 30 chimeric proteins that exhibited transcriptional activation, some of which were able to discriminate between wild-type and mutant DNA targets. Chimeric library proteins expressed as glutathione S-transferase fusions bound to double-stranded oligonucleotides containing the target sequence, suggesting that the chimeras bind directly to DNA. Surprisingly, none of the peptides identified resembled a zinc finger or other well-known transcription factor DNA binding domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phytochemical resveratrol, which is found in grapes and wine, has been reported to have a variety of anti-inflammatory, anti-platelet, and anti-carcinogenic effects. Based on its structural similarity to diethylstilbestrol, a synthetic estrogen, we examined whether resveratrol might be a phytoestrogen. At concentrations (≈3–10 μM) comparable to those required for its other biological effects, resveratrol inhibited the binding of labeled estradiol to the estrogen receptor and it activated transcription of estrogen-responsive reporter genes transfected into human breast cancer cells. This transcriptional activation was estrogen receptor-dependent, required an estrogen response element in the reporter gene, and was inhibited by specific estrogen antagonists. In some cell types (e.g., MCF-7 cells), resveratrol functioned as a superagonist (i.e., produced a greater maximal transcriptional response than estradiol) whereas in others it produced activation equal to or less than that of estradiol. Resveratrol also increased the expression of native estrogen-regulated genes, and it stimulated the proliferation of estrogen-dependent T47D breast cancer cells. We conclude that resveratrol is a phytoestrogen and that it exhibits variable degrees of estrogen receptor agonism in different test systems. The estrogenic actions of resveratrol broaden the spectrum of its biological actions and may be relevant to the reported cardiovascular benefits of drinking wine.