32 resultados para RELEASE CHANNEL
Resumo:
Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.
Resumo:
Antigen-specific activation of T lymphocytes, via stimulation of the T-cell antigen receptor (TCR) complex, is marked by a rapid and sustained increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). It has been suggested that the second messenger inositol 1,4,5-trisphosphate (IP3) produced after TCR stimulation binds to the IP3 receptor (IP3R), an intracellular Ca(2+)-release channel, and triggers the increase in [Ca2+]i that activates transcription of the gene for T-cell growth factor interleukin 2 (IL-2). However, the role of the IP3R in T-cell signaling and possibly in plasma membrane Ca2+ influx in T cells remains unproven. Stable transfection of T cells (Jurkat) with antisense type 1 IP3R cDNA prevented type 1 IP3R expression, providing a tool for dissecting the role of IP3 signaling during T-cell activation. T cells lacking type 1 IP3R failed to increase [Ca2+]i or produce IL-2 after TCR stimulation. Moreover, depletion of intracellular Ca2+ stores without TCR activation stimulated Ca2+ influx in cells lacking the type 1 IP3R. These results establish that the type 1 IP3R is required for intracellular Ca2+ release that triggers antigen-specific T-cell proliferation but not for plasma membrane Ca2+ influx.
Resumo:
We describe the full-length (72 kDa) myotonin protein kinase (Mt-PK) and demonstrate its kinase activity. The 72-kDa protein corresponds to the translation product from the first in-frame AUG codon. This protein was found in the cytoplasmic fraction, whereas the previously reported 55-kDa protein was observed in nuclear extracts. Only the 72-kDa protein was phosphorylated by [32P]phosphate in normal human fibroblasts. To investigate the putative kinase activity of Mt-PK, a construct containing the full-length open reading frame of Mt-PK was expressed in bacterial cells. The recombinant Mt-PK autophosphorylates a Ser residue and phosphorylates the synthetic peptide Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg, which contains a Ser residue in the phosphorylation site. We examined phosphorylation of the voltage-dependent Ca(2+)-release channel, or dihydropyridine receptor (DHPR), by recombinant Mt-PK. We observed that the beta subunit of DHPR was phosphorylated in vitro by Mt-PK. A beta-subunit DHPR peptide containing some of the Ser residues predicted to be phosphorylated was synthesized and found to be a substrate for Mt-PK in vitro. We conclude that the 72-kDa Mt-PK has a protein kinase activity specific for Ser residues.
Resumo:
The ryanodine receptor-like Ca2+ channel (RyRLC) is responsible for Ca2+ wave propagation and Ca2+ oscillations in certain nonmuscle cells by a Ca(2+)-induced Ca2+ release (CICR) mechanism. Cyclic ADP-ribose (cADPR), an enzymatic product derived from NAD+, is the only known endogenous metabolite that acts as an agonist on the RyRLC. However, the mode of action of cADPR is not clear. We have identified calmodulin as a functional mediator of cADPR-triggered CICR through the RyRLC in sea urchin eggs. cADPR-induced Ca2+ release consisted of two phases, an initial rapid release phase and a subsequent slower release. The second phase was selectively potentiated by calmodulin which, in turn, was activated by Ca2+ released during the initial phase. Caffeine enhanced the action of calmodulin. Calmodulin did not play a role in inositol 1,4,5-trisphosphate-induced Ca2+ release. These findings offer insights into the multiple pathways that regulate intracellular Ca2+ signaling.
Resumo:
The effect of the two metal-ion chelators EDTA and citrate on the action of N-methyl-D-aspartate (NMDA) receptors was investigated by use of cultured mouse cerebellar granule neurons and Xenopus oocytes, respectively, to monitor either NMDA-evoked transmitter release or membrane currents. Transmitter release from the glutamatergic neurons was determined by superfusion of the cells after preloading with the glutamate analogue D-[3H]aspartate. The oocytes were injected with mRNA isolated from mouse cerebellum and, after incubation to allow translation to occur, currents mediated by NMDA were recorded electrophysiologically by voltage clamp at a holding potential of -80 mV. It was found that citrate as well as EDTA could attenuate the inhibitory action of Zn2+ on NMDA receptor-mediated transmitter release from the neurons and membrane currents in the oocytes. These effects were specifically related to the NMDA receptor, since the NMDA receptor antagonist MK-801 abolished the action and no effects of Zn2+ and its chelators were observed when kainate was used to selectively activate non-NMDA receptors. Since it was additionally demonstrated that citrate (and EDTA) preferentially chelated Zn2+ rather than Ca2+, the present findings strongly suggest that endogenous citrate released specifically from astrocytes into the extracellular space in the brain may function as a modulator of NMDA receptor activity. This is yet another example of astrocytic influence on neuronal activity.
Resumo:
Voltage-dependent Ca2+ currents evoke synaptic transmitter release. Of six types of Ca2+ channels, L-, N-, P-, Q-, R-, and T-type, only N- and P/Q-type channels have been pharmacologically identified to mediate action-potential-evoked transmitter release in the mammalian central nervous system. We tested whether Ca2+ channels other than N- and P/Q-type control transmitter release in a calyx-type synapse of the rat medial nucleus of the trapezoid body. Simultaneous recordings of presynaptic Ca2+ influx and the excitatory postsynaptic current evoked by a single action potential were made at single synapses. The R-type channel, a high-voltage-activated Ca2+ channel resistant to L-, N-, and P/Q-type channel blockers, contributed 26% of the total Ca2+ influx during a presynaptic action potential. This Ca2+ current evoked transmitter release sufficiently large to initiate an action potential in the postsynaptic neuron. The R-type current controlled release with a lower efficacy than other types of Ca2+ currents. Activation of metabotropic glutamate receptors and γ-aminobutyric acid type B receptors inhibited the R-type current. Because a significant fraction of presynaptic Ca2+ channels remains unidentified in many other central synapses, the R-type current also could contribute to evoked transmitter release in these synapses.
Resumo:
Purines can modify ciliary epithelial secretion of aqueous humor into the eye. The source of the purinergic agonists acting in the ciliary epithelium, as in many epithelial tissues, is unknown. We found that the fluorescent ATP marker quinacrine stained rabbit and bovine ciliary epithelia but not the nerve fibers in the ciliary bodies. Cultured bovine pigmented and nonpigmented ciliary epithelial cells also stained intensely when incubated with quinacrine. Hypotonic stimulation of cultured epithelial cells increased the extracellular ATP concentration by 3-fold; this measurement underestimates actual release as the cells also displayed ecto-ATPase activity. The hypotonically triggered increase in ATP was inhibited by the Cl−-channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in both cell types. In contrast, the P-glycoprotein inhibitors tamoxifen and verapamil and the cystic fibrosis transmembrane conductance regulator (CFTR) blockers glybenclamide and diphenylamine-2-carboxylate did not affect ATP release from either cell type. This pharmacological profile suggests that ATP release is not restricted to P-glycoprotein or the cystic fibrosis transmembrane conductance regulator, but can proceed through a route sensitive to NPPB. ATP release also was triggered by ionomycin through a different NPPB-insensitive mechanism, inhibitable by the calcium/calmodulin-activated kinase II inhibitor KN-62. Thus, both layers of the ciliary epithelium store and release ATP, and purines likely modulate aqueous humor flow by paracrine and/or autocrine mechanisms within the two cell layers of this epithelium.
Resumo:
ATP-sensitive potassium (KATP) channels in the pancreatic β cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The β cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.
Resumo:
Salt and water secretion from intestinal epithelia requires enhancement of anion permeability across the apical membrane of Cl− secreting cells lining the crypt, the secretory gland of the intestine. Paneth cells located at the base of the small intestinal crypt release enteric defensins (cryptdins) apically into the lumen. Because cryptdins are homologs of molecules known to form anion conductive pores in phospholipid bilayers, we tested whether these endogenous antimicrobial peptides could act as soluble inducers of channel-like activity when applied to apical membranes of intestinal Cl− secreting epithelial cells in culture. Of the six peptides tested, cryptdins 2 and 3 stimulated Cl− secretion from polarized monolayers of human intestinal T84 cells. The response was reversible and dose dependent. In contrast, cryptdins 1, 4, 5, and 6 lacked this activity, demonstrating that Paneth cell defensins with very similar primary structures may exhibit a high degree of specificity in their capacity to elicit Cl− secretion. The secretory response was not inhibited by pretreatment with 8-phenyltheophyline (1 μM), or dependent on a concomitant rise in intracellular cAMP or cGMP, indicating that the apically located adenosine and guanylin receptors were not involved. On the other hand, cryptdin 3 elicited a secretory response that correlated with the establishment of an apically located anion conductive channel permeable to carboxyfluorescein. Thus cryptdins 2 and 3 can selectively permeabilize the apical cell membrane of epithelial cells in culture to elicit a physiologic Cl− secretory response. These data define the capability of cryptdins 2 and 3 to function as novel intestinal secretagogues, and suggest a previously undescribed mechanism of paracrine signaling that in vivo may involve the reversible formation of ion conductive channels by peptides released into the crypt microenvironment.
Resumo:
The ATP-sensitive potassium channel (K-ATP channel) plays a key role in insulin secretion from pancreatic β-cells. It is closed by glucose metabolism, which stimulates secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and MgADP concentration, which inhibit and potentiate channel activity, respectively. The β-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. The site at which ATP mediates channel inhibition lies on Kir6.2, while the potentiatory action of MgADP involves the nucleotide-binding domains of SUR1. K-ATP channels are also activated by MgGTP and MgGDP. Furthermore, both nucleotides support the stimulatory actions of diazoxide. It is not known, however, whether guanine nucleotides mediate their effects by direct interaction with one or more of the K-ATP channel subunits or indirectly via a GTP-binding protein. We used a truncated form of Kir6.2, which expresses independently of SUR1, to show that GTP blocks K-ATP currents by interaction with Kir6.2 and that the potentiatory effects of GTP are endowed by SUR1. We also showed that mutation of the lysine residue in the Walker A motif of either the first (K719A) or second (K1384M) nucleotide-binding domain of SUR1 abolished both the potentiatory effects of GTP and GDP on K-ATP currents and their ability to support stimulation by diazoxide. This argues that the stimulatory effects of guanine nucleotides require the presence of both Walker A lysines.
Resumo:
The BCL-2 family of proteins is composed of both pro- and antiapoptotic regulators, although its most critical biochemical functions remain uncertain. The structural similarity between the BCL-XL monomer and several ion-pore-forming bacterial toxins has prompted electrophysiologic studies. Both BAX and BCL-2 insert into KCl-loaded vesicles in a pH-dependent fashion and demonstrate macroscopic ion efflux. Release is maximum at ≈pH 4.0 for both proteins; however, BAX demonstrates a broader pH range of activity. Both purified proteins also insert into planar lipid bilayers at pH 4.0. Single-channel recordings revealed a minimal channel conductance for BAX of 22 pS that evolved to channel currents with at least three subconductance levels. The final, apparently stable BAX channel had a conductance of 0.731 nS at pH 4.0 that changed to 0.329 nS when shifted to pH 7.0 but remained mildly Cl− selective and predominantly open. When BAX-incorporated lipid vesicles were fused to planar lipid bilayers at pH 7.0, a Cl−-selective (PK/PCl = 0.3) 1.5-nS channel displaying mild inward rectification was noted. In contrast, BCL-2 formed mildly K+-selective (PK/PCl = 3.9) channels with a most prominent initial conductance of 80 pS that increased to 1.90 nS. Fusion of BCL-2-incorporated lipid vesicles into planar bilayers at pH 7.0 also revealed mild K+ selectivity (PK/PCl = 2.4) with a maximum conductance of 1.08 nS. BAX and BCL-2 each form channels in artificial membranes that have distinct characteristics including ion selectivity, conductance, voltage dependence, and rectification. Thus, one role of these molecules may include pore activity at selected membrane sites.
Resumo:
Applying a brief repolarizing pre-pulse to a depolarized frog skeletal muscle fiber restores a small fraction of the transverse tubule membrane voltage sensors from the inactivated state. During a subsequent depolarizing test pulse we detected brief, highly localized elevations of myoplasmic Ca2+ concentration (Ca2+ “sparks”) initiated by restored voltage sensors in individual triads at all test pulse voltages. The latency histogram of these events gives the gating pattern of the sarcoplasmic reticulum (SR) calcium release channels controlled by the restored voltage sensors. Both event frequency and clustering of events near the start of the test pulse increase with test pulse depolarization. The macroscopic SR calcium release waveform, obtained from the spark latency histogram and the estimated open time of the channel or channels underlying a spark, exhibits an early peak and rapid marked decline during large depolarizations. For smaller depolarizations, the release waveform exhibits a smaller peak and a slower decline. However, the mean use time and mean amplitude of the individual sparks are quite similar at all test depolarizations and at all times during a given depolarization, indicating that the channel open times and conductances underlying sparks are essentially independent of voltage. Thus, the voltage dependence of SR Ca2+ release is due to changes in the frequency and pattern of occurrence of individual, voltage-independent, discrete release events.
Resumo:
Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.
Resumo:
Secretion of neurotransmitters is initiated by voltage-gated calcium influx through presynaptic, voltage-gated N-type calcium channels. These channels interact with the SNARE proteins, which are core components of the exocytosis process, via the synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their α1B subunit. Interruption of this interaction by competing synprint peptides inhibits fast, synchronous transmitter release. Here we identify a voltage-dependent, but calcium-independent, enhancement of transmitter release that is elicited by trains of action potentials in the presence of a hyperosmotic extracellular concentration of sucrose. This enhancement of transmitter release requires interaction of SNARE proteins with the synprint site. Our results provide evidence for a voltage-dependent signal that is transmitted by protein–protein interactions from the N-type calcium channel to the SNARE proteins and enhances neurotransmitter release by altering SNARE protein function.
Resumo:
Cytochrome c release and the mitochondrial permeability transition (PT), including loss of the transmembrane potential (Δψ), play an important role in apoptosis. Using isolated mitochondria, we found that recombinant Bax and Bak, proapoptotic members of the Bcl-2 family, induced mitochondrial Δψ loss, swelling, and cytochrome c release. All of these changes were dependent on Ca2+ and were prevented by cyclosporin A (CsA) and bongkrekic acid, both of which close the PT pores (megachannels), indicating that Bax- and Bak-induced mitochondrial changes were mediated through the opening of these pores. Bax-induced mitochondrial changes were inhibited by recombinant Bcl-xL and transgene-derived Bcl-2, antiapoptotic members of the Bcl-2 family, as well as by oligomycin, suggesting a possible regulatory effect of F0F1-ATPase on Bax-induced mitochondrial changes. Proapoptotic Bax- and Bak-BH3 (Bcl-2 homology) peptides, but not a mutant BH3 peptide nor a mutant Bak lacking BH3, induced the mitochondrial changes, indicating an essential role of the BH3 region. A coimmunoprecipitation study revealed that Bax and Bak interacted with the voltage-dependent anion channel, which is a component of PT pores. Taken together, these findings suggest that proapoptotic Bcl-2 family proteins, including Bax and Bak, induce the mitochondrial PT and cytochrome c release by interacting with the PT pores.