32 resultados para Proteolytic activity


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prosystemin is the 200-amino acid precursor of the 18-amino acid polypeptide defense hormone, systemin. Herein, we report that prosystemin was found to be as biologically active as systemin when assayed for proteinase inhibitor induction in young tomato plants and nearly as active in the alkalinization response in Lycopersicon esculentum suspension-cultured cells. Similar to many animal prohormones that harbor multiple signals, the systemin precursor contains five imperfect repetitive domains N-terminal to a single systemin domain. Whether the five repetitive domains contain defense signals has not been established. N-terminal deletions of prosystemin had little effect on its activity in tomato plants or suspension-cultured cells. Deletion of the C-terminal region of prosystemin containing the 18-amino acid systemin domain completely abolished its proteinase inhibitor induction and alkalinization activities. The apoplastic fluid from tomato leaves and the medium of cultured cells were analyzed for proteolytic activity that could process prosystemin to systemin. These experiments showed that proteolytic enzymes present in the apoplasm and medium could cleave prosystemin into large fragments, but the enzymes did not produce detectable levels of systemin. Additionally, inhibitors of these proteolytic enzymes did not affect the biological activity of prosystemin. The cumulative data indicated that prosystemin and/or large fragments of prosystemin can be active inducers of defense responses in both tomato leaves and suspension-cultured cells and that the only region of prosystemin that is responsible for activating the defense response resides in the systemin domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Progression through the cell cycle is regulated in part by the sequential activation and inactivation of cyclin-dependent kinases (CDKs). Many signals arrest the cell cycle through inhibition of CDKs by CDK inhibitors (CKIs). p27Kip1 (p27) was first identified as a CKI that binds and inhibits cyclin A/CDK2 and cyclin E/CDK2 complexes in G1. Here we report that p27 has an additional property, the ability to induce a proteolytic activity that cleaves cyclin A, yielding a truncated cyclin A lacking the mitotic destruction box. Other CKIs (p15Ink4b, p16Ink4a, p21Cip1, and p57Kip2) do not induce cleavage of cyclin A; other cyclins (cyclin B, D1, and E) are not cleaved by the p27-induced protease activity. The C-terminal half of p27, which is dispensable for its kinase inhibitory activity, is required to induce cleavage. Mechanistically, p27 does not appear to cause cleavage through direct interaction with cyclin/CDK complexes. Instead, it activates a latent protease that, once activated, does not require the continuing presence of p27. Mutation of cyclin A at R70 or R71, residues at or very close to the cleavage site, blocks cleavage. Noncleavable mutants are still recognized by the anaphase-promoting complex/cyclosome pathway responsible for ubiquitin-dependent proteolysis of mitotic cyclins, indicating that the p27-induced cleavage of cyclin A is part of a separate pathway. We refer to this protease as Tsap (pTwenty-seven- activated protease).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having α,β-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme’s catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tobacco plants were transformed with a cDNA clone of chymotrypsin/trypsin-specific potato proteinase inhibitor II (PI2) under the control of a constitutive promoter. Although considerable levels of transgene expression could be demonstrated, the growth of Spodoptera exigua larvae fed with detached leaves of PI2-expressing plants was not affected. Analysis of the composition of tryptic gut activity demonstrated that only 18% of the proteinase activity of insects reared on these transgenic plants was sensitive to inhibition by PI2, whereas 78% was sensitive in insects reared on control plants. Larvae had compensated for this loss of tryptic activity by a 2.5-fold induction of new activity that was insensitive to inhibition by PI2. PI2-insensitive proteolytic activity was also induced in response to endogenous proteinase inhibitors of tobacco; therefore, induction of such proteinase activity may represent the mechanism by which insects that feed on plants overcome plant proteinase inhibitor defense.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A human fibroblast cDNA expression library was screened for cDNA clones giving rise to flat colonies when transfected into v-Ki-ras-transformed NIH 3T3 cells. One such gene, RECK, encodes a membrane-anchored glycoprotein of about 110 kDa with multiple epidermal growth factor-like repeats and serine-protease inhibitor-like domains. While RECK mRNA is expressed in various human tissues and untransformed cells, it is undetectable in tumor-derived cell lines and oncogenically transformed cells. Restored expression of RECK in malignant cells resulted in suppression of invasive activity with concomitant decrease in the secretion of matrix metalloproteinase-9 (MMP-9), a key enzyme involved in tumor invasion and metastasis. Moreover, purified RECK protein was found to bind to, and inhibit the proteolytic activity of, MMP-9. Thus, RECK may link oncogenic signals to tumor invasion and metastasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has long been suspected that proteolytic activity associated with advancing growth cones may be required for axon extension. We have isolated mutations in the kuzbanian (kuz) gene, which is expressed in the nervous system and encodes a putative zinc metalloprotease with a disintegrin domain. Drosophila embryos with loss-of-function mutations in kuz have dramatic defects in the development of central nervous system axon pathways, with many axons stalling and failing to extend through the nerve cord. This phenotype is rescued by panneural expression of kuz mRNA in the embryo. These results show that the Kuz metalloprotease is required for axon extension, suggesting a requirement for proteolytic activity at the growth cone surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strains of Bacteroides fragilis associated with diarrheal disease (enterotoxigenic B. fragilis) produce a 20-kDa zinc-dependent metalloprotease toxin (B. fragilis enterotoxin; BFT) that reversibly stimulates chloride secretion and alters tight junctional function in polarized intestinal epithelial cells. BFT alters cellular morphology and physiology most potently and rapidly when placed on the basolateral membrane of epithelial cells, suggesting that the cellular substrate for BFT may be present on this membrane. Herein, we demonstrate that BFT specifically cleaves within 1 min the extracellular domain of the zonula adherens protein, E-cadherin. Cleavage of E-cadherin by BFT is ATP-independent and essential to the morphologic and physiologic activity of BFT. However, the morphologic changes occurring in response to BFT are dependent on target-cell ATP. E-cadherin is shown here to be a cellular substrate for a bacterial toxin and represents the identification of a mechanism of action, cell-surface proteolytic activity, for a bacterial toxin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lon protein of Escherichia coli is an ATP-dependent protease responsible for the rapid turnover of both abnormal and naturally unstable proteins, including SulA, a cell division inhibitor made after DNA damage, and RcsA, a positive regulator of transcription. Lon is a multimer of identical 94-kDa subunits, each containing a consensus ATPase motif and a serine active site. We found that overexpressing Lon, which is mutated for the serine active site (LonS679A) and is therefore devoid of proteolytic activity, unexpectedly led to complementation of the UV sensitivity and capsule overproduction of a lon deletion mutant. SulA was not degraded by LonS679A, but rather was completely protected by the Lon mutant from degradation by other cellular proteases. We interpret these results to mean that the mutant LonS679A binds but does not degrade Lon substrates, resulting in sequestration of the substrate proteins and interference with their activities, resulting in apparent complementation. Lon that carried a mutation in the consensus ATPase site, either with or without the active site serine, was no longer able to complement a Δlon mutant. These in vivo results suggest that the pathway of degradation by Lon couples ATP-dependent unfolding with movement of the substrate into protected chambers within Lon, where it is held until degradation proceeds. In the absence of degradation the substrate remains sequestered. Comparison of our results with those from a number of other systems suggest that proteins related to the regulatory portions of energy-dependent proteases act as energy-dependent sequestration proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding infertility and sterility requires knowledge of the molecular mechanisms underlying sexual reproduction. We have found that male mice deficient for the gene encoding the protease inhibitor protease nexin-1 (PN-1) show a marked impairment in fertility from the onset of sexual maturity. Absence of PN-1 results in altered semen protein composition, which leads to inadequate semen coagulation and deficient vaginal plug formation upon copulation. Progressive morphological changes of the seminal vesicles also are observed. Consistent with these findings, abnormal PN-1 expression was found in the semen of men displaying seminal dysfunction. The data demonstrate that the level of extracellular proteolytic activity is a critical element in controlling male fertility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term aging of potato (Solanum tuberosum) seed-tubers resulted in a loss of patatin (40 kD) and a cysteine-proteinase inhibitor, potato multicystatin (PMC), as well as an increase in the activities of 84-, 95-, and 125-kD proteinases. Highly active, additional proteinases (75, 90, and 100 kD) appeared in the oldest tubers. Over 90% of the total proteolytic activity in aged tubers was sensitive to trans-epoxysuccinyl-l-leucylamido (4-guanidino) butane or leupeptin, whereas pepstatin was the most effective inhibitor of proteinases in young tubers. Proteinases in aged tubers were also inhibited by crude extracts or purified PMC from young tubers, suggesting that the loss of PMC was responsible for the age-induced increase in proteinase activity. Nonenzymatic oxidation, glycation, and deamidation of proteins were enhanced by aging. Aged tubers developed “daughter” tubers that contained 3-fold more protein than “mother” tubers, with a polypeptide profile consistent with that of young tubers. Although PMC and patatin were absent from the older mother tubers, both proteins were expressed in the daughter tubers, indicating that aging did not compromise the efficacy of genes encoding PMC and patatin. Unlike the mother tubers, proteinase activity in daughter tubers was undetectable. Our results indicate that tuber aging nonenzymatically modifies proteins, which enhances their susceptibility to breakdown; we also identify a role for PMC in regulating protein turnover in potato tubers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wounding of endothelial cells is associated with altered direct intercellular communication. To determine whether gap junctional communication participates to the wound repair process, we have compared connexin (Cx) expression, cell-to-cell coupling and kinetics of wound repair in monolayer cultures of PymT-transformed mouse endothelial cells (clone bEnd.3) and in bEnd.3 cells expressing different dominant negative Cx inhibitors. In parental bEnd.3 cells, mechanical wounding increased expression of Cx43 and decreased expression of Cx37 at the site of injury, whereas Cx40 expression was unaffected. These wound-induced changes in Cx expression were associated with functional changes in cell-to-cell coupling, as assessed with different fluorescent tracers. Stable transfection with cDNAs encoding for the chimeric connexin 3243H7 or the fusion protein Cx43-βGal resulted in perturbed gap junctional communication between bEnd.3 cells under both basal and wounded conditions. The time required for complete repair of a defined wound within a confluent monolayer was increased by ∼50% in cells expressing the dominant negative Cx inhibitors, whereas other cell properties, such as proliferation rate, migration of single cells, cyst formation and extracellular proteolytic activity, were unaltered. These findings demonstrate that proper Cx expression is required for coordinated migration during repair of an endothelial wound.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most plants have the ability to respond to fluctuations in light to minimize damage to the photosynthetic apparatus. A proteolytic activity has been discovered that is involved in the degradation of the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCII) when the antenna size of photosystem II is reduced upon acclimation of plants from low to high light intensities. This ATP-dependent proteolytic activity is of the serine or cysteine type and is associated with the outer membrane surface of the stroma-exposed thylakoid regions. The identity of the protease is not known, but it does not correspond to the recently identified chloroplast ATP-dependent proteases Clp and FtsH, which are homologs to bacterial enzymes. The acclimative response shows a delay of 2 d after transfer of the leaves to high light. This lag period was shown to be attributed to expression or activation of the responsible protease. Furthermore, the LHCII degradation was found to be regulated at the substrate level. The degradation process involves lateral migration of LHCII from the appressed to the nonappressed thylakoid regions, which is the location for the responsible protease. Phosphorylated LHCII was found to be a poor substrate for degradation in comparison with the unphosphorylated form of the protein. The relationship between LHCII degradation and other regulatory proteolytic processes in the thylakoid membrane, such as D1-protein degradation, is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intact etioplasts of bean (Phaseolus vulgaris) plants exhibit proteolytic activity against the exogenously added apoprotein of the light-harvesting pigment-protein complex serving photosystem II (LHCII) that increases as etiolation is prolonged. The activity increases in the membrane fraction but not in the stroma, where it remains low and constant and is mainly directed against LHCII and protochlorophyllide oxidoreductase. The thylakoid proteolytic activity, which is low in etioplasts of 6-d-old etiolated plants, increases in plants pretreated with a pulse of light or exposed to intermittent-light (ImL) cycles, but decreases during prolonged exposure to continuous light, coincident with chlorophyll (Chl) accumulation. To distinguish between the control of Chl and/or development on proteolytic activity, we used plants exposed to ImL cycles of varying dark-phase durations. In ImL plants exposed to an equal number of ImL cycles with short or long dark intervals (i.e. equal Chl accumulation but different developmental stage) proteolytic activity increased with the duration of the dark phase. In plants exposed to ImL for equal durations to such light-dark cycles (i.e. different Chl accumulation but same developmental stage) the proteolytic activity was similar. These results suggest that the protease, which is free to act under limited Chl accumulation, is dependent on the developmental stage of the chloroplast, and give a clue as to why plants in ImL with short dark intervals contain LHCII, whereas those with long dark intervals possess only photosystem-unit cores and lack LHCII.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crucial role of cell signaling in hemostasis is clearly established by the action of the downstream coagulation protease thrombin that cleaves platelet-expressed G-protein-coupled protease activated receptors (PARs). Certain PARs are cleaved by the upstream coagulation proteases factor Xa (Xa) and the tissue factor (TF)–factor VIIa (VIIa) complex, but these enzymes are required at high nonphysiological concentrations and show limited recognition specificity for the scissile bond of target PARs. However, defining a physiological mechanism of PAR activation by upstream proteases is highly relevant because of the potent anti-inflammatory in vivo effects of inhibitors of the TF initiation complex. Activation of substrate factor X (X) by the TF–VIIa complex is here shown to produce enhanced cell signaling in comparison to the TF–VIIa complex alone, free Xa, or Xa that is generated in situ by the intrinsic activation complex. Macromolecular assembly of X into a ternary complex of TF–VIIa–X is required for proteolytic conversion to Xa, and product Xa remains transiently associated in a TF–VIIa–Xa complex. By trapping this complex with a unique inhibitor that preserves Xa activity, we directly show that Xa in this ternary complex efficiently activates PAR-1 and -2. These experiments support the concept that proinflammatory upstream coagulation protease signaling is mechanistically coupled and thus an integrated part of the TF–VIIa-initiated coagulation pathway, rather than a late event during excessive activation of coagulation and systemic generation of proteolytic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes are important effectors of antiviral immunity, and they induce target cell death either by secretion of cytoplasmic granules containing perforin and granzymes or by signaling through the Fas cell surface antigen. Although it is not known whether the granule-mediated and Fas-mediated cytolytic mechanisms share common components, proteinase activity has been implicated as an important feature of both pathways. The orthopoxviruses cowpox virus and rabbitpox virus each encode three members of the serpin family of proteinase inhibitors, designated SPI-1, SPI-2, and SPI-3. Of these, SPI-2 (also referred to as cytokine response modifier A in cowpox virus) has been shown to inhibit the proteolytic activity of both members of the interleukin 1 beta converting enzyme family and granzyme B. We report here that cells infected with cowpox or rabbitpox viruses exhibit resistance to cytolysis by either cytolytic mechanism. Whereas mutation of the cytokine response modifier A/SPI-2 gene was necessary to relieve inhibition of Fasmediated cytolysis, in some cell types mutation of SPI-1, in addition to cytokine response modifier A/SPI-2, was necessary to completely abrogate inhibition. In contrast, viral inhibition of granule-mediated killing was unaffected by mutation of cytokine response modifier A/SPI-2 alone, and it was relieved only when both the cytokine response modifier A/SPI-2 and SPI-1 genes were inactivated. These results suggest that an interleukin 1 beta converting enzyme-like enzymatic activity is involved in both killing mechanisms and indicate that two viral proteins, SPI-1 and cytokine response modifier A/SPI-2, are necessary to inhibit both cytolysis pathways.