45 resultados para Proteínas proto-oncogênicas c-fos
Resumo:
Activation by growth factors of the Ras-dependent signaling cascade results in the induction of p90 ribosomal S6 kinases (p90rsk). These are translocated into the nucleus upon phosphorylation by mitogen-activated protein kinases, with which p90rsk are physically associated in the cytoplasm. In humans there are three isoforms of the p90rsk family, Rsk-1, Rsk-2, and Rsk-3, which are products of distinct genes. Although these isoforms are structurally very similar, little is known about their functional specificity. Recently, mutations in the Rsk-2 gene have been associated with the Coffin–Lowry syndrome (CLS). We have studied a fibroblast cell line established from a CLS patient that bears a nonfunctional Rsk-2. Here we document that in CLS fibroblasts there is a drastic attenuation in the induced Ser-133 phosphorylation of transcription factor CREB (cAMP response element-binding protein) in response to epidermal growth factor stimulation. The effect is specific, since response to serum, cAMP, and UV light is unaltered. Furthermore, epidermal growth factor-induced expression of c-fos is severely impaired in CLS fibroblasts despite normal phosphorylation of serum response factor and Elk-1. Finally, coexpression of Rsk-2 in transfected cells results in the activation of the c-fos promoter via the cAMP-responsive element. Thus, we establish a link in the transduction of a specific growth factor signal to changes in gene expression via the phosphorylation of CREB by Rsk-2.
Resumo:
Estrogen has been implicated in brain functions related to affective state, including hormone-related affective disorders in women. Although some reports suggest that estrogen appears to decrease vulnerability to affective disorders in certain cases, the mechanisms involved are unknown. We used the forced swim test (FST), a paradigm used to test the efficacy of antidepressants, and addressed the hypotheses that estrogen alters behavior of ovariectomized rats in the FST and the FST-induced expression of c-fos, a marker for neuronal activity, in the rat forebrain. The behaviors displayed included struggling, swimming, and immobility. One hour after the beginning of the test on day 2, the animals were perfused, and the brains were processed for c-fos immunocytochemistry. On day 1, the estradiol benzoate-treated animals spent significantly less time struggling and virtually no time in immobility and spent most of the time swimming. Control rats spent significantly more time struggling or being immobile during a comparable period. On day 2, similar behavioral patterns with still more pronounced differences were observed between estradiol benzoate and ovariectomized control groups in struggling, immobility, and swimming. Analysis of the mean number of c-fos immunoreactive cell nuclei showed a significant reduction in the estradiol benzoate versus control groups in areas of the forebrain relating to sensory, contextual, and integrative processing. Our results suggest that estrogen-induced neurochemical changes in forebrain neurons may translate into an altered behavioral output in the affective domain.
Resumo:
Mechanically stressed cells display increased levels of fos message and protein. Although the intracellular signaling pathways responsible for FOS induction have been extensively characterized, we still do not understand the nature of the primary cell mechanotransduction event responsible for converting an externally acting mechanical stressor into an intracellular signal cascade. We now report that plasma membrane disruption (PMD) is quantitatively correlated on a cell-by-cell basis with fos protein levels expressed in mechanically injured monolayers. When the population of PMD-affected cells in injured monolayers was selectively prevented from responding to the injury, the fos response was completely ablated, demonstrating that PMD is a requisite event. This PMD-dependent expression of fos protein did not require cell exposure to cues inherent in release from cell–cell contact inhibition or presented by denuded substratum, because it also occurred in subconfluent monolayers. Fos expression also could not be explained by factors released through PMD, because cell injury conditioned medium failed to elicit fos expression. Translocation of the transcription factor NF-κB into the nucleus may also be regulated by PMD, based on a quantitative correlation similar to that found with fos. We propose that PMD, by allowing a flux of normally impermeant molecules across the plasma membrane, mediates a previously unrecognized form of cell mechanotransduction. PMD may thereby lead to cell growth or hypertrophy responses such as those that are present normally in mechanically stressed skeletal muscle and pathologically in the cardiovascular system.
Resumo:
Integrin-mediated adhesion induces several signaling pathways leading to regulation of gene transcription, control of cell cycle entry and survival from apoptosis. Here we investigate the involvement of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway in integrin-mediated signaling. Plating primary human endothelial cells from umbilical cord and the human endothelial cell line ECV304 on matrix proteins or on antibody to β1- or αv-integrin subunits induces transient tyrosine phosphorylation of JAK2 and STAT5A. Consistent with a role for the JAK/STAT pathway in regulation of gene transcription, adhesion to matrix proteins leads to the formation of STAT5A-containing complexes with the serum-inducible element of c-fos promoter. Stable expression of a dominant negative form of STAT5A in NIH3T3 cells reduces fibronectin-induced c-fos mRNA expression, indicating the involvement of STAT5A in integrin-mediated c-fos transcription. Thus these data present a new integrin-dependent signaling mechanism involving the JAK/STAT pathway in response to cell–matrix interaction.
Resumo:
Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a “GC” box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by β-naphthoflavone and tert-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1.
Resumo:
Transcription factors control eukaryotic polymerase II function by influencing the recruitment of multiprotein complexes to promoters and their subsequent integrated function. The complexity of the functional ‘transcriptosome’ has necessitated biochemical fractionation and subsequent protein sequencing on a grand scale to identify individual components. As a consequence, much is now known of the basal transcription complex. In contrast, less is known about the complexes formed at distal promoter elements. The c-fos SRE, for example, is known to bind Serum Response Factor (SRF) and ternary complex factors such as Elk-1. Their interaction with other factors at the SRE is implied but, to date, none have been identified. Here we describe the use of mass-spectrometric sequencing to identify six proteins, SRF, Elk-1 and four novel proteins, captured on SRE duplexes linked to magnetic beads. This approach is generally applicable to the characterisation of nucleic acid-bound protein complexes and the post-translational modification of their components.
Resumo:
Using a mRNA differential screening of fibroblasts differing for the expression of c-fos we isolated a c-fos-induced growth factor (FIGF). The deduced protein sequence predicts that the cDNA codes for a new member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family. Northern blot analysis shows that FIGF expression is strongly reduced in c-fos-deficient cells. Transfection of exogenous c-fos driven by a constitutive promoter restores the FIGF expression in these cells. In contrast, both PDGF and VEGF expression is unaffected by c-fos. FIGF is a secreted dimeric protein able to stimulate mitogenic activity in fibroblasts. FIGF overexpression induces morphological alterations in fibroblasts. The cells acquire a spindle-shaped morphology, become more refractive, disorganized, and detach from the plate. These results imply that FIGF is a downstream growth and morphogenic effector of c-fos. These results also suggest that the expression of FIGF in response to c-fos activation induces specific differentiation patterns and its aberrant activation contributes to the malignant phenotype of tumors.
Resumo:
In a search for regulatory proteins that interact with the leucine zipper motif of c-Fos in the yeast two-hybrid screen, we have identified a protein (FZA-B) that has extensive sequence similarity to SUG1 of Saccharomyces cerevisiae. Here we show that FZA-B can functionally substitute for SUG1 in yeast and that FZA-B interacts with Fos proteins in vitro through their leucine zippers. In rat liver and in HeLa cells, FZA-B is present in the 26S proteasome complex, as is c-Fos. Immobilized antibody raised against an FZA-B-specific peptide depleted peptidase activity, proteasomal proteins, FZA-B, and c-Fos from a 26S proteasome preparation. FZA-B is found predominantly in the nuclear fraction of COS cells expressing an FZA-B transgene and in the nuclear 26S proteasome of HeLa cells. We conclude that FZA-B is the mammalian homolog of SUG1 (mSug1) and that it is present in the nuclear 26S proteasome of cells. Our results suggest that mSug1 may be involved in the degradation of c-Fos and other transcription factors.
Resumo:
The interleukin 2 receptor (IL-2R) consists of three subunits, the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two Janus family protein tyrosine kinases (PTKs), Jak1 and Jak3, were shown to associate with IL-2R beta c and IL-2R gamma c, respectively, and their PTK activities are increased after IL-2 stimulation. A Jak3 mutant with truncation of the C-terminal PTK domain lacks its intrinsic kinase activity but can still associate with IL-2R gamma c. In a hematopoietic cell line, F7, that responds to either IL-2 or IL-3, overexpression of this Jak3 mutant results in selective inhibition of the IL-2-induced activation of Jak1/Jak3 PTKs and of cell proliferation. Of the three target nuclear protooncogenes of the IL-2 signaling, c-fos and c-myc genes, but not the bcl-2 gene, were found to be impaired. On the other hand, overexpression of the dominant negative form of the IL-2R gamma c chain, which lacks most of its cytoplasmic domain, in F7 cells resulted in the inhibition of all three protooncogenes. These results provide a further molecular basis for the critical role of Jak3 in IL-2 signaling and also suggest a Jak PTK-independent signaling pathway(s) for the bcl-2 gene induction by IL-2R.
Resumo:
Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the β isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKCβ isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKCβ2 isoform in the myocardium. These mice overexpressed the PKCβ2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKCβ-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKCβ2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.
Resumo:
c-Mpl, a member of the hematopoietic cytokine receptor family, is the receptor for thrombopoietin. To investigate signal transduction by c-Mpl, a chimeric receptor, composed of the extracellular domain of human growth hormone receptor and the intracellular domain of c-Mpl, was introduced into the interleukin 3-dependent cell line Ba/F3. In response to growth hormone, this chimeric receptor induced growth in the absence of interleukin 3. Deletion analysis of the 123-amino acid intracellular domain indicated that the elements responsible for this effect are present within the 63 amino acids proximal to the transmembrane domain. Mutation of the recently described box 1 motif abrogated the proliferative response. Tyrosine phosphorylation of the tyrosine kinase JAK-2 and activation of STAT proteins were dependent on box 1 and sequences within 63 amino acids of the plasma membrane. STAT proteins activated by thrombopoietin in a megakaryocytic cell line were purified and shown to be STAT1 and STAT3. A separate region located at the C terminus of the c-Mpl intracellular domain was found to be required for induction of Shc phosphorylation and c-fos mRNA accumulation, suggesting involvement of the Ras signal transduction pathway. Thus, at least two distinct regions are involved in signal transduction by the c-Mpl.
Resumo:
Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.
Resumo:
Receptors coupled to heterotrimeric G proteins can effectively stimulate growth promoting pathways in a large variety of cell types, and if persistently activated, these receptors can also behave as dominant-acting oncoproteins. Consistently, activating mutations for G proteins of the Gαs and Gαi2 families were found in human tumors; and members of the Gαq and Gα12 families are fully transforming when expressed in murine fibroblasts. In an effort aimed to elucidate the molecular events involved in proliferative signaling through heterotrimeric G proteins we have focused recently on gene expression regulation. Using NIH 3T3 fibroblasts expressing m1 muscarinic acetylcholine receptors as a model system, we have observed that activation of this transforming G protein-coupled receptors induces the rapid expression of a variety of early responsive genes, including the c-fos protooncogene. One of the c-fos promoter elements, the serum response element (SRE), plays a central regulatory role, and activation of SRE-dependent transcription has been found to be regulated by several proteins, including the serum response factor and the ternary complex factor. With the aid of reporter plasmids for gene expression, we observed here that stimulation of m1 muscarinic acetylcholine receptors potently induced SRE-driven reporter gene activity in NIH 3T3 cells. In these cells, only the Gα12 family of heterotrimeric G protein α subunits strongly induced the SRE, while Gβ1γ2 dimers activated SRE to a more limited extent. Furthermore, our study provides strong evidence that m1, Gα12 and the small GTP-binding protein RhoA are components of a novel signal transduction pathway that leads to the ternary complex factor-independent transcriptional activation of the SRE and to cellular transformation.