64 resultados para Phenotypic Plasticity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leguminous plants in symbiosis with rhizobia form either indeterminate nodules with a persistent meristem or determinate nodules with a transient meristematic region. Sesbania rostrata was thought to possess determinate stem and root nodules. However, the nature of nodule development is hybrid, and the early stages resemble those of indeterminate nodules. Here we show that, depending on the environmental conditions, mature root nodules can be of the indeterminate type. In situ hybridizations with molecular markers for plant cell division, as well as the patterns of bacterial nod and nif gene expression, confirmed the indeterminate nature of 30-day-old functional root nodules. Experimental data provide evidence that the switch in nodule type is mediated by the plant hormone ethylene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Central to swarm formation in migratory locusts is a crowding-induced change from a “solitarious” to a “gregarious” phenotype. This change can occur within the lifetime of a single locust and accrues across generations. It represents an extreme example of phenotypic plasticity. We present computer simulations and a laboratory experiment that show how differences in resource distributions, conspicuous only at small spatial scales, can have significant effects on phase change at the population level; local spatial concentration of resource induces gregarization. Simulations also show that populations inhabiting a locally concentrated resource tend to change phase rapidly and synchronously in response to altered population densities. Our results show why information about the structure of resource at small spatial scales should become key components in monitoring and control strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The life-history strategies of organisms are sculpted over evolutionary time by the relative prospects of present and future reproductive success. As a consequence, animals of many species show flexible behavioral responses to environmental and social change. Here we show that disruption of the habitat of a colony of African cichlid fish, Haplochromis burtoni (Günther) caused males to switch social status more frequently than animals kept in a stable environment. H. burtoni males can be either reproductively active, guarding a territory, or reproductively inactive (nonterritorial). Although on average 25–50% of the males are territorial in both the stable and unstable environments, during the 20-week study, nearly two-thirds of the animals became territorial for at least 1 week. Moreover, many fish changed social status several times. Surprisingly, the induced changes in social status caused changes in somatic growth. Nonterritorial males and animals ascending in social rank showed an increased growth rate whereas territorial males and animals descending in social rank slowed their growth rate or even shrank. Similar behavioral and physiological changes are caused by social change in animals kept in stable environmental conditions, although at a lower rate. This suggests that differential growth, in interaction with environmental conditions, is a central mechanism underlying the changes in social status. Such reversible phenotypic plasticity in a crucial life-history trait may have evolved to enable animals to shift resources from reproduction to growth or vice versa, depending on present and future reproductive prospects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the striking features of vascular endothelium, the single-cell-thick lining of the cardiovascular system, is its phenotypic plasticity. Various pathophysiologic factors, such as cytokines, growth factors, hormones, and metabolic products, can modulate its functional phenotype in health and disease. In addition to these humoral stimuli, endothelial cells respond to their biomechanical environment, although the functional implications of this biomechanical paradigm of activation have not been fully explored. Here we describe a high-throughput genomic analysis of modulation of gene expression observed in cultured human endothelial cells exposed to two well defined biomechanical stimuli—a steady laminar shear stress and a turbulent shear stress of equivalent spatial and temporal average intensity. Comparison of the transcriptional activity of 11,397 unique genes revealed distinctive patterns of up- and down-regulation associated with each type of stimulus. Cluster analyses of transcriptional profiling data were coupled with other molecular and cell biological techniques to examine whether these global patterns of biomechanical activation are translated into distinct functional phenotypes. Confocal immunofluorescence microscopy of structural and contractile proteins revealed the formation of a complex apical cytoskeleton in response to laminar shear stress. Cell cycle analysis documented different effects of laminar and turbulent shear stresses on cell proliferation. Thus, endothelial cells have the capacity to discriminate among specific biomechanical forces and to translate these input stimuli into distinctive phenotypes. The demonstration that hemodynamically derived stimuli can be strong modulators of endothelial gene expression has important implications for our understanding of the mechanisms of vascular homeostasis and atherogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurons in very low density hippocampal cultures that are physiologically identified as either GABAergic inhibitory or glutamatergic excitatory all contain mRNA for the gamma-aminobutyric acid (GABA) synthetic enzyme, glutamic acid decarboxylase (GAD), as detected by single cell mRNA amplification and PCR. However, consistent with the physiology, immunocytochemistry revealed that only a subset of the neurons stain for either GAD protein or GABA. A similar fraction hybridize with RNA probes for GAD65 and GAD67. Hippocampal CA1 pyramidal neurons in slice preparations, which are traditionally thought to be excitatory, also contain mRNA for GAD65 and GAD67. Hippocampal neurons in culture did not contain mRNA for two other neurotransmitter synthesizing enzymes, tyrosine hydroxylase, and choline acetyl transferase. These data suggest that in some neurons, presumably the excitatory neurons, GAD mRNA is selectively regulated at the level of translation. We propose that neurotransmitter phenotype may be posttranscriptionally regulated and neurons may exhibit transient phenotypic plasticity in response to environmental influences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified a novel β amyloid precursor protein (βAPP) mutation (V715M-βAPP770) that cosegregates with early-onset Alzheimer’s disease (AD) in a pedigree. Unlike other familial AD-linked βAPP mutations reported to date, overexpression of V715M-βAPP in human HEK293 cells and murine neurons reduces total Aβ production and increases the recovery of the physiologically secreted product, APPα. V715M-βAPP significantly reduces Aβ40 secretion without affecting Aβ42 production in HEK293 cells. However, a marked increase in N-terminally truncated Aβ ending at position 42 (x-42Aβ) is observed, whereas its counterpart x-40Aβ is not affected. These results suggest that, in some cases, familial AD may be associated with a reduction in the overall production of Aβ but may be caused by increased production of truncated forms of Aβ ending at the 42 position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonin N-acetyltransferase is the enzyme responsible for the diurnal rhythm of melatonin production in the pineal gland of animals and humans. Inhibitors of this enzyme active in cell culture have not been reported previously. The compound N-bromoacetyltryptamine was shown to be a potent inhibitor of this enzyme in vitro and in a pineal cell culture assay (IC50 ≈ 500 nM). The mechanism of inhibition is suggested to involve a serotonin N-acetyltransferase-catalyzed alkylation reaction between N-bromoacetyltryptamine and reduced CoA, resulting in the production of a tight-binding bisubstrate analog inhibitor. This alkyltransferase activity is apparently catalyzed at a functionally distinct site compared with the acetyltransferase activity active site on serotonin N-acetyltransferase. Such active site plasticity is suggested to result from a subtle conformational alteration in the protein. This plasticity allows for an unusual form of mechanism-based inhibition with multiple turnovers, resulting in “molecular fratricide.” N-bromoacetyltryptamine should serve as a useful tool for dissecting the role of melatonin in circadian rhythm as well as a potential lead compound for therapeutic use in mood and sleep disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmids that contain synthetic genes coding for small oligoribonucleotides called external guide sequences (EGSs) have been introduced into strains of Escherichia coli harboring antibiotic resistance genes. The EGSs direct RNase P to cleave the mRNAs transcribed from these genes thereby converting the phenotype of drug-resistant cells to drug sensitivity. Increasing the EGS-to-target mRNA ratio by changing gene copy number or the number of EGSs complementary to different target sites enhances the efficiency of the conversion process. We demonstrate a general method for the efficient phenotypic conversion of drug-resistant bacterial cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method of P-element mutagenesis is described for the isolation of mutants affecting the development of the Drosophila compound eye. It exploits the interaction between the Bride of Sevenless (Boss) ligand and the Sevenless (Sev) receptor tyrosine kinase that triggers the formation of the UV-sensitive photoreceptor neuron, R7. Transposition of a boss cDNA transgene, in an otherwise boss mutant background, was used as a “phenotypic trap” in live flies to identify enhancers expressed during a narrow time window in eye development. Using a rapid behavioral screen, more than 400,000 flies were tested for restoration of R7. Some 1,800 R7-containing flies were identified. Among these, 21 independent insertions with expression of the boss reporter gene in the R8 cell were identified by a external eye morphology and staining with an antibody against Boss. Among 900 lines with expression of the boss reporter gene in multiple cells assessed for homozygous mutant phenotypes, insertions in the marbles, glass, gap1, and fasciclin II genes were isolated. This phenotypic enhancer-trap facilitates (i) the isolation of enhancer-traps with a specific expression pattern, and (ii) the recovery of mutants disrupting development of specific tissues. Because the temporal and tissue specificity of the phenotypic trap is dependent on the choice of the marker used, this approach can be extended to other tissues and developmental stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal slices are used to show that, as a temporal input pattern of activity flows through a neuronal layer, a temporal-to-spatial transformation takes place. That is, neurons can respond selectively to the first or second of a pair of input pulses, thus transforming different temporal patterns of activity into the activity of different neurons. This is demonstrated using associative long-term potentiation of polysynaptic CA1 responses as an activity-dependent marker: by depolarizing a postsynaptic CA1 neuron exclusively with the first or second of a pair of pulses from the dentate gyrus, it is possible to “tag” different subpopulations of CA3 neurons. This technique allows sampling of a population of neurons without recording simultaneously from multiple neurons. Furthermore, it reflects a biologically plausible mechanism by which single neurons may develop selective responses to time-varying stimuli and permits the induction of context-sensitive synaptic plasticity. These experimental results support the view that networks of neurons are intrinsically able to process temporal information and that it is not necessary to invoke the existence of internal clocks or delay lines for temporal processing on the time scale of tens to hundreds of milliseconds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genetic defect in a CC-chemokine receptor (CCR)-5, the principal coreceptor for the macrophage-tropic HIV type 1 (HIV-1), recently was found to naturally protect CCR-5-defective, but healthy, individuals from HIV-1 infection. In this study, we mimic the natural resistance of the CCR-5-defective individuals by designing a strategy to phenotypically knock out CCR-5. The inactivation of the CCR-5 coreceptor is accomplished by targeting a modified CC-chemokine to the endoplasmic reticulum to block the surface expression of newly synthesized CCR-5. The lymphocytes transduced to express the intracellular chemokine, termed “intrakine,” were found to be viable and resistant to macrophage-tropic HIV-1 infection. Thus, this gene-based intrakine strategy targeted at the conserved cellular receptor for the prevention of HIV-1 entry should have significant advantages over currently described approaches for HIV-1 therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data suggest that survival of resting, naïve T cells requires an interaction with self MHC molecules. From analysis of the class I MHC-restricted T cell receptor transgenic strain OT-I, we report a different response. Rather than merely surviving, these T cells proliferated slowly after transfer into T-depleted syngeneic hosts. This expansion required both T cell “space” and expression of normal levels of self class I MHC molecules. Furthermore, we demonstrate that during homeostatic expansion in a suitable environment, naïve phenotype (CD44low) OT-I T cells converted to memory phenotype (CD44med/high), despite the absence of foreign antigenic stimulation. On the other hand, cells undergoing homeostatic expansion did not acquire cytolytic effector function. The significance of these data for reactivity of T cells with self peptide/MHC ligands and the implications for normal and abnormal T cell homeostasis are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single mossy fiber input contains several release sites and is located on the proximal portion of the apical dendrite of CA3 neurons. It is, therefore, well suited to exert a strong influence on pyramidal cell excitability. Accordingly, the mossy fiber synapse has been referred to as a detonator or teacher synapse in autoassociative network models of the hippocampus. The very low firing rates of granule cells [Jung, M. W. & McNaughton, B. L. (1993) Hippocampus 3, 165–182], which give rise to the mossy fibers, raise the question of how the mossy fiber synapse temporally integrates synaptic activity. We have therefore addressed the frequency dependence of mossy fiber transmission and compared it to associational/commissural synapses in the CA3 region of the hippocampus. Paired pulse facilitation had a similar time course, but was 2-fold greater for mossy fiber synapses. Frequency facilitation, during which repetitive stimulation causes a reversible growth in synaptic transmission, was markedly different at the two synapses. At associational/commissural synapses facilitation occurred only at frequencies greater than once every 10 s and reached a magnitude of about 125% of control. At mossy fiber synapses, facilitation occurred at frequencies as low as once every 40 s and reached a magnitude of 6-fold. Frequency facilitation was dependent on a rise in intraterminal Ca2+ and activation of Ca2+/calmodulin-dependent kinase II, and was greatly reduced at synapses expressing mossy fiber long-term potentiation. These results indicate that the mossy fiber synapse is able to integrate granule cell spiking activity over a broad range of frequencies, and this dynamic range is substantially reduced by long-term potentiation.