30 resultados para Origins
Resumo:
The TEL (ETV6)−AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in ≈25% of the most predominant subtype of leukemia— common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia.
Resumo:
Topological frustration in an energetically unfrustrated off-lattice model of the helical protein fragment B of protein A from Staphylococcus aureus was investigated. This Gō-type model exhibited thermodynamic and kinetic signatures of a well-designed two-state folder with concurrent collapse and folding transitions and single exponential kinetics at the transition temperature. Topological frustration is determined in the absence of energetic frustration by the distribution of Fersht φ values. Topologically unfrustrated systems present a unimodal distribution sharply peaked at intermediate φ, whereas highly frustrated systems display a bimodal distribution peaked at low and high φ values. The distribution of φ values in protein A was determined both thermodynamically and kinetically. Both methods yielded a unimodal distribution centered at φ = 0.3 with tails extending to low and high φ values, indicating the presence of a small amount of topological frustration. The contacts with high φ values were located in the turn regions between helices I and II and II and III, intimating that these hairpins are in large part required in the transition state. Our results are in good agreement with all-atom simulations of protein A, as well as lattice simulations of a three- letter code 27-mer (which can be compared with a 60-residue helical protein). The relatively broad unimodal distribution of φ values obtained from the all-atom simulations and that from the minimalist model for the same native fold suggest that the structure of the transition state ensemble is determined mostly by the protein topology and not energetic frustration.
Resumo:
We cloned two hemoglobin genes from Arabidopsis thaliana. One gene, AHB1, is related in sequence to the family of nonsymbiotic hemoglobin genes previously identified in a number of plant species (class 1). The second hemoglobin gene, AHB2, represents a class of nonsymbiotic hemoglobin (class 2) related in sequence to the symbiotic hemoglobin genes of legumes and Casuarina. The properties of these two hemoglobins suggest that the two families of nonsymbiotic hemoglobins may differ in function from each other and from the symbiotic hemoglobins. AHB1 is induced, in both roots and rosette leaves, by low oxygen levels. Recombinant AHB1 has an oxygen affinity so high as to make it unlikely to function as an oxygen transporter. AHB2 is expressed at a low level in rosette leaves and is low temperature-inducible. AHB2 protein has a lower affinity for oxygen than AHB1 but is similar to AHB1 in having an unusually low, pH-sensitive oxygen off-rate.
Resumo:
The prevalence of woody species in oceanic islands has attracted the attention of evolutionary biologists for more than a century. We used a phylogeny based on sequences of the internal-transcribed spacer region of nuclear ribosomal DNA to trace the evolution of woodiness in Pericallis (Asteraceae: Senecioneae), a genus endemic to the Macaronesian archipelagos of the Azores, Madeira, and Canaries. Our results show that woodiness in Pericallis originated independently at least twice in these islands, further weakening some previous hypotheses concerning the value of this character for tracing the continental ancestry of island endemics. The same data suggest that the origin of woodiness is correlated with ecological shifts from open to species-rich habitats and that the ancestor of Pericallis was an herbaceous species adapted to marginal habitats of the laurel forest. Our results also support Pericallis as closely related to New World genera of the tribe Senecioneae.
Resumo:
Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2′-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1°C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3′ ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3′-5′ exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-Å resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 Å and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2′-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.
Resumo:
The rice genus, Oryza, which comprises 23 species and 9 recognized genome types, represents an enormous gene pool for genetic improvement of rice cultivars. Clarification of phylogenetic relationships of rice genomes is critical for effective utilization of the wild rice germ plasm. By generating and comparing two nuclear gene (Adh1 and Adh2) trees and a chloroplast gene (matK) tree of all rice species, phylogenetic relationships among the rice genomes were inferred. Origins of the allotetraploid species, which constitute more than one-third of rice species diversity, were reconstructed based on the Adh gene phylogenies. Genome types of the maternal parents of allotetraploid species were determined based on the matK gene tree. The phylogenetic reconstruction largely supports the previous recognition of rice genomes. It further revealed that the EE genome species is most closely related to the DD genome progenitor that gave rise to the CCDD genome. Three species of the CCDD genome may have originated through a single hybridization event, and their maternal parent had the CC genome. The BBCC genome species had different origins, and their maternal parents had either a BB or CC genome. An additional genome type, HHKK, was recognized for Oryza schlechteri and Porteresia coarctata, suggesting that P. coarctata is an Oryza species. The AA genome lineage, which contains cultivated rice, is a recently diverged and rapidly radiated lineage within the rice genus.
Resumo:
It is known that the squirrel monkey, marmoset, and other related New World (NW) monkeys possess three high-frequency alleles at the single X-linked photopigment locus, and that the spectral sensitivity peaks of these alleles are within those delimited by the human red and green pigment genes. The three alleles in the squirrel monkey and marmoset have been sequenced previously. In this study, the three alleles were found and sequenced in the saki monkey, capuchin, and tamarin. Although the capuchin and tamarin belong to the same family as the squirrel monkey and marmoset, the saki monkey belongs to a different family and is one of the species that is most divergent from the squirrel monkey and marmoset, suggesting the presence of the triallelic system in many NW monkeys. The nucleotide sequences of these alleles from the five species studied indicate that gene conversion occurs frequently and has partially or completely homogenized intronic and exonic regions of the alleles in each species, making it appear that a triallelic system arose independently in each of the five species studied. Nevertheless, a detailed analysis suggests that the triallelic system arose only once in the NW monkey lineage, from a middle wavelength (green) opsin gene, and that the amino acid differences at functionally critical sites among alleles have been maintained by natural selection in NW monkeys for >20 million years. Moreover, the two X-linked opsin genes of howler monkeys (a NW monkey genus) were evidently derived from the incorporation of a middle (green) and a long wavelength (red) allele into one chromosome; these two genes together with the (autosomal) blue opsin gene would immediately enable even a male monkey to have trichromatic vision.
Resumo:
The question surrounding the colonization of Polynesia has remained controversial. Two hypotheses, one postulating Taiwan as the putative homeland and the other asserting a Melanesian origin of the Polynesian people, have received considerable attention. In this work, we present haplotype data based on the distribution of 19 biallelic polymorphisms on the Y chromosome in a sample of 551 male individuals from 36 populations living in Southeast Asia, Taiwan, Micronesia, Melanesia, and Polynesia. Surprisingly, nearly none of the Taiwanese Y haplotypes were found in Micronesia and Polynesia. Likewise, a Melanesian-specific haplotype was not found among the Polynesians. However, all of the Polynesian, Micronesian, and Taiwanese haplotypes are present in the extant Southeast Asian populations. Evidently, the Y-chromosome data do not lend support to either of the prevailing hypotheses. Rather, we postulate that Southeast Asia provided a genetic source for two independent migrations, one toward Taiwan and the other toward Polynesia through island Southeast Asia.
Resumo:
The evolutionary relationships of 46 Shigella strains representing each of the serotypes belonging to the four traditional Shigella species (subgroups), Dysenteriae, Flexneri, Boydii, and Sonnei, were determined by sequencing of eight housekeeping genes in four regions of the chromosome. Analysis revealed a very similar evolutionary pattern for each region. Three clusters of strains were identified, each including strains from different subgroups. Cluster 1 contains the majority of Boydii and Dysenteriae strains (B1–4, B6, B8, B10, B14, and B18; and D3–7, D9, and D11–13) plus Flexneri 6 and 6A. Cluster 2 contains seven Boydii strains (B5, B7, B9, B11, B15, B16, and B17) and Dysenteriae 2. Cluster 3 contains one Boydii strain (B12) and the Flexneri serotypes 1–5 strains. Sonnei and three Dysenteriae strains (D1, D8, and D10) are outside of the three main clusters but, nonetheless, are clearly within Escherichia coli. Boydii 13 was found to be distantly related to E. coli. Shigella strains, like the other pathogenic forms of E. coli, do not have a single evolutionary origin, indicating convergent evolution of Shigella phenotypic properties. We estimate the three main Shigella clusters to have evolved within the last 35,000 to 270,000 years, suggesting that shigellosis was one of the early infectious diseases of humans.
Resumo:
Many bacterial plasmids replicate by a rolling-circle mechanism that involves the generation of single-stranded DNA (ssDNA) intermediates. Replication of the lagging strand of such plasmids initiates from their single strand origin (sso). Many different types of ssos have been identified. One group of ssos, termed ssoA, which have conserved sequence and structural features, function efficiently only in their natural hosts in vivo. To study the host specificity of sso sequences, we have analyzed the functions of two closely related ssoAs belonging to the staphylococcal plasmid pE194 and the streptococcal plasmid pLS1 in Staphylococcus aureus. The pLS1 ssoA functioned poorly in vivo in S. aureus as evidenced by accumulation of high levels of ssDNA but supported efficient replication in vitro in staphylococcal extracts. These results suggest that one or more host factors that are present in sufficient quantities in S. aureus cell-free extracts may be limiting in vivo. Mapping of the initiation points of lagging strand synthesis in vivo and in vitro showed that DNA synthesis initiates from specific sites within the pLS1 ssoA. These results demonstrate that specific initiation of replication can occur from the pLS1 ssoA in S. aureus although it plays a minimal role in lagging strand synthesis in vivo. Therefore, the poor functionality of the pLS1 in vivo in a nonnative host is caused by the low efficiency rather than a lack of specificity of the initiation process. We also have identified ssDNA promoters and mapped the primer RNAs synthesized by the S. aureus and Bacillus subtilis RNA polymerases from the pE194 and pLS1 ssoAs. The S. aureus RNA polymerase bound more efficiently to the native pE194 ssoA as compared with the pLS1 ssoA, suggesting that the strength of RNA polymerase–ssoA interaction may play a major role in the functionality of the ssoA sequences in Gram-positive bacteria.
Resumo:
Mitochondrial genomes of all vertebrate animals analyzed to date have the same 37 genes, whose arrangement in the circular DNA molecule varies only in the relative position of a few genes. This relative conservation suggests that mitochondrial gene order characters have potential utility as phylogenetic markers for higher-level vertebrate taxa. We report discovery of a mitochondrial gene order that has had multiple independent originations within birds, based on sampling of 137 species representing 13 traditionally recognized orders. This provides evidence of parallel evolution in mitochondrial gene order for animals. Our results indicate operation of physical constraints on mitochondrial gene order changes and support models for gene order change based on replication error. Bird mitochondria have a displaced OL (origin of light-strand replication site) as do various other Reptilia taxa prone to gene order changes. Our findings point to the need for broad taxonomic sampling in using mitochondrial gene order for phylogenetic analyses. We found, however, that the alternative mitochondrial gene orders distinguish the two primary groups of songbirds (order Passeriformes), oscines and suboscines, in agreement with other molecular as well as morphological data sets. Thus, although mitochondrial gene order characters appear susceptible to some parallel evolution because of mechanistic constraints, they do hold promise for phylogenetic studies.
Resumo:
Each year, millions of monarch butterflies from eastern North America migrate to overwinter in 10–13 discrete colonies located in the Oyamel forests of central Mexico. For decades efforts to track monarch migration have relied on observations and tag-recapture methods, culminating with the discovery of the wintering colonies in 1975. Monarch tag returns from Mexico, however, are few and primarily from two accessible colonies, and therefore tag-recapture techniques have not quantified natal origins or distinctiveness among monarch populations at wintering sites. Such information would be invaluable in the conservation of the monarch and its migration phenomenon since the wintering sites currently are threatened by habitat alteration. Here we show that stable hydrogen (δD) and carbon (δ13C) isotope ratios of wintering monarchs can be used to evaluate natal origins on the summer breeding range. Stable-hydrogen and carbon isotopic values of 597 wintering monarchs from 13 wintering roost sites were compared with isotopic patterns measured in individuals at natal sites across their breeding range over a single migration cycle. We determined that all monarch wintering colonies were composed of individuals originating mainly from the Midwest, United States, thereby providing evidence for a panmictic model of wintering colony composition. However, two colonies showed more northerly origins, suggesting possible priority colonies for conservation efforts.
Resumo:
Equilibrium unilamellar vesicles are stabilized by one of two distinct mechanisms depending on the value of the bending constant. Helfrich undulations ensure that the interbilayer potential is always repulsive when the bending constant, K, is of order kBT. When K ≫ kBT, unilamellar vesicles are stabilized by the spontaneous curvature that picks out a particular vesicle radius; other radii are disfavored energetically. We present measurements of the bilayer elastic constant and the spontaneous curvature, Ro, for three different systems of equilibrium vesicles by an analysis of the vesicle size distribution determined by cryo-transmission electron microscopy and small-angle neutron scattering. For cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate catanionic vesicles, K = .7 kBT, suggesting that the unilamellar vesicles are stabilized by Helfrich-undulation repulsions. However, for CTAB and sodium perfluorooctanoate (FC7) vesicles, K = 6 kBT, suggesting stabilization by the energetic costs of deviations from the spontaneous curvature. Adding electrolyte to the sodium perfluorooctanoate/CTAB vesicles leads to vesicles with two bilayers; the attractive interactions between the bilayers can overcome the cost of small deviations from the spontaneous curvature to form two-layer vesicles, but larger deviations to form three and more layer vesicles are prohibited. Vesicles with a discrete numbers of bilayers at equilibrium are possible only for bilayers with a large bending modulus coupled with a spontaneous curvature.