22 resultados para Operons
Resumo:
The genomes of most eukaryotes are composed of genes arranged on the chromosomes without regard to function, with each gene transcribed from a promoter at its 5′ end. However, the genome of the free-living nematode Caenorhabditis elegans contains numerous polycistronic clusters similar to bacterial operons in which the genes are transcribed sequentially from a single promoter at the 5′ end of the cluster. The resulting polycistronic pre-mRNAs are processed into monocistronic mRNAs by conventional 3′ end formation, cleavage, and polyadenylation, accompanied by trans-splicing with a specialized spliced leader (SL), SL2. To determine whether this mode of gene organization and expression, apparently unique among the animals, occurs in other species, we have investigated genes in a distantly related free-living rhabditid nematode in the genus Dolichorhabditis (strain CEW1). We have identified both SL1 and SL2 RNAs in this species. In addition, we have sequenced a Dolichorhabditis genomic region containing a gene cluster with all of the characteristics of the C. elegans operons. We show that the downstream gene is trans-spliced to SL2. We also present evidence that suggests that these two genes are also clustered in the C. elegans and Caenorhabditis briggsae genomes. Thus, it appears that the arrangement of genes in operons pre-dates the divergence of the genus Caenorhabditis from the other genera in the family Rhabditidae, and may be more widespread than is currently appreciated.
Resumo:
Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120–350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.
Resumo:
Operon structure is an important organization feature of bacterial genomes. Many sets of genes occur in the same order on multiple genomes; these conserved gene groupings represent candidate operons. This study describes a computational method to estimate the likelihood that such conserved gene sets form operons. The method was used to analyze 34 bacterial and archaeal genomes, and yielded more than 7600 pairs of genes that are highly likely (P ≥ 0.98) to belong to the same operon. The sensitivity of our method is 30–50% for the Escherichia coli genome. The predicted gene pairs are available from our World Wide Web site http://www.tigr.org/tigr-scripts/operons/operons.cgi.
Resumo:
cAMP, through the activation of cAMP-dependent protein kinase (PKA), is involved in transcriptional regulation. In eukaryotic cells, cAMP is not considered to alter the binding affinity of CREB/ATF to cAMP-responsive element (CRE) but to induce serine phosphorylation and consequent increase in transcriptional activity. In contrast, in prokaryotic cells, cAMP enhances the DNA binding of the catabolite repressor protein to regulate the transcription of several operons. The structural similarity of the cAMP binding sites in catabolite repressor protein and regulatory subunit of PKA type II (RII) suggested the possibility of a similar role for RII in eukaryotic gene regulation. Herein we report that RIIβ subunit of PKA is a transcription factor capable of interacting physically and functionally with a CRE. In contrast to CREB/ATF, the binding of RIIβ to a CRE was enhanced by cAMP, and in addition, RIIβ exhibited transcriptional activity as a Gal4-RIIβ fusion protein. These experiments identify RIIβ as a component of an alternative pathway for regulation of CRE-directed transcription in eukaryotic cells.
Resumo:
Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed of 85 amino acids. Crh exhibits 45% sequence identity with HPr, but the active site His-15 of HPr is replaced with a glutamine in Crh. Crh is therefore not phosphorylated by PEP and enzyme I, but is phosphorylated by ATP and the HPr kinase in the presence of fructose-1,6-bisphosphate. We determined Ser-46 as the site of phosphorylation in Crh by carrying out mass spectrometry with peptides obtained by tryptic digestion or CNBr cleavage. In a B. subtilis ptsH1 mutant strain, synthesis of β-xylosidase, inositol dehydrogenase, and levanase was only partially relieved from CCR. Additional disruption of the crh gene caused almost complete relief from CCR. In a ptsH1 crh1 mutant, producing HPr and Crh in which Ser-46 is replaced with a nonphosphorylatable alanyl residue, expression of β-xylosidase was also completely relieved from glucose repression. These results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46.
Resumo:
Biological sensing of small molecules such as NO, O2, and CO is an important area of research; however, little is know about how CO is sensed biologically. The photosynthetic bacterium Rhodospirillum rubrum responds to CO by activating transcription of two operons that encode a CO-oxidizing system. A protein, CooA, has been identified as necessary for this response. CooA is a member of a family of transcriptional regulators similar to the cAMP receptor protein and fumavate nitrate reduction from Escherichia coli. In this study we report the purification of wild-type CooA from its native organism, R. rubrum, to greater than 95% purity. The purified protein is active in sequence-specific DNA binding in the presence of CO, but not in the absence of CO. Gel filtration experiments reveal the protein to be a dimer in the absence of CO. Purified CooA contains 1.6 mol heme per mol of dimer. Upon interacting with CO, the electronic spectrum of CooA is perturbed, indicating the direct binding of CO to the heme of CooA. A hypothesis for the mechanism of the protein’s response to CO is proposed.
Resumo:
Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a β-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, with the second, third, and sixth position present in the D-configuration. The gene cluster from B. subtilis ATCC6633 specifying the biosynthesis of mycosubtilin was identified. The putative operon spans 38 kb and consists of four ORFs, designated fenF, mycA, mycB, and mycC, with strong homologies to the family of peptide synthetases. Biochemical characterization showed that MycB specifically adenylates tyrosine, as expected for mycosubtilin synthetase, and insertional mutagenesis of the operon resulted in a mycosubtilin-negative phenotype. The mycosubtilin synthetase reveals features unique for peptide synthetases as well as for fatty acid synthases: (i) The mycosubtilin synthase subunit A (MycA) combines functional domains derived from peptide synthetases, amino transferases, and fatty acid synthases. MycA represents the first example of a natural hybrid between these enzyme families. (ii) The organization of the synthetase subunits deviates from that commonly found in peptide synthetases. On the basis of the described characteristics of the mycosubtilin synthetase, we present a model for the biosynthesis of iturin lipopeptide antibiotics. Comparison of the sequences flanking the mycosubtilin operon of B. subtilis ATCC6633, with the complete genome sequence of B. subtilis strain 168 indicates that the fengycin and mycosubtilin lipopeptide synthetase operons are exchanged between the two B. subtilis strains.
Resumo:
Bacteria communicate with each other to coordinate expression of specific genes in a cell density-dependent fashion, a phenomenon called quorum sensing and response. Although we know that quorum sensing via acyl-homoserine lactone (HSL) signals controls expression of several virulence genes in the human pathogen Pseudomonas aeruginosa, the number and types of genes controlled by quorum sensing have not been studied systematically. We have constructed a library of random insertions in the chromosome of a P. aeruginosa acyl-HSL synthesis mutant by using a transposon containing a promoterless lacZ. This library was screened for acyl-HSL induction of lacZ. Thirty-nine quorum sensing-regulated genes were identified. The genes were organized into classes depending on the pattern of regulation. About half of the genes appear to be in seven operons, some seem organized in large patches on the genome. Many of the quorum sensing-regulated genes code for putative virulence factors or production of secondary metabolites. Many of the genes identified showed a high level of induction by acyl-HSL signaling.
Resumo:
The twin-domain model [Liu, L. F. & Wang, J. C. (1987) Proc. Natl. Acad. Sci. USA 84, 7024–7027] suggests that closely spaced, divergent, superhelically sensitive promoters can affect the transcriptional activity of one another by transcriptionally induced negative DNA supercoiling generated in the divergent promoter region. This gene arrangement is observed for many LysR-type-regulated operons in bacteria. We have examined the effects of divergent transcription in the prototypic LysR-type system, the ilvYC operon of Escherichia coli. Double-reporter constructs with the lacZ gene under transcriptional control of the ilvC promoter and the galK gene under control of the divergent ilvY promoter were used to demonstrate that a down-promoter mutation in the ilvY promoter severely decreases in vivo transcription from the ilvC promoter. However, a down-promoter mutation in the ilvC promoter only slightly affects transcription from the ilvY promoter. In vitro transcription assays with DNA topoisomers showed that transcription from the ilvC promoter increases over the entire range of physiological superhelical densities, whereas transcription initiation from the ilvY promoter exhibits a broad optimum at a midphysiological superhelical density. Evidence that this promoter coupling is DNA supercoiling-dependent is provided by the observation that a novobiocin-induced decrease in global negative superhelicity results in an increase in ilvY promoter activity and a decrease in ilvC promoter activity predicted by the in vitro data. We suggest that this transcriptional coupling is important for coordinating basal level expression of the ilvYC operon with the nutritional and environmental conditions of cell growth.
Resumo:
Enterohemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli cause a characteristic histopathology in intestinal cells known as attaching and effacing. The attaching and effacing lesion is encoded by the Locus of Enterocyte Effacement (LEE) pathogenicity island, which encodes a type III secretion system, the intimin intestinal colonization factor, and the translocated intimin receptor protein that is translocated from the bacterium to the host epithelial cells. Using lacZ reporter gene fusions, we show that expression of the LEE operons encoding the type III secretion system, translocated intimin receptor, and intimin is regulated by quorum sensing in both enterohemorrhagic E. coli and enteropathogenic E. coli. The luxS gene recently shown to be responsible for production of autoinducer in the Vibrio harveyi and E. coli quorum-sensing systems is responsible for regulation of the LEE operons, as shown by the mutation and complementation of the luxS gene. Regulation of intestinal colonization factors by quorum sensing could play an important role in the pathogenesis of disease caused by these organisms. These results suggest that intestinal colonization by E. coli O157:H7, which has an unusually low infectious dose, could be induced by quorum sensing of signals produced by nonpathogenic E. coli of the normal intestinal flora.
Resumo:
Fourteen different genes included in a DNA fragment of 18 kb are involved in the aerobic degradation of phenylacetic acid by Pseudomonas putida U. This catabolic pathway appears to be organized in three contiguous operons that contain the following functional units: (i) a transport system, (ii) a phenylacetic acid activating enzyme, (iii) a ring-hydroxylation complex, (iv) a ring-opening protein, (v) a β-oxidation-like system, and (vi) two regulatory genes. This pathway constitutes the common part (core) of a complex functional unit (catabolon) integrated by several routes that catalyze the transformation of structurally related molecules into a common intermediate (phenylacetyl-CoA).
Resumo:
The NagC and Mlc proteins are homologous transcriptional regulators that control the expression of several phosphotransferase system (PTS) genes in Escherichia coli. NagC represses nagE, encoding the N-acetylglucosamine-specific transporter, while Mlc represses three PTS operons, ptsG, manXYZ and ptsHIcrr, involved in the uptake of glucose. NagC and Mlc can bind to each others operator, at least in vitro. A binding site selection procedure was used to try to distinguish NagC and Mlc sites. The major difference was that all selected NagC binding sites had a G or a C at positions +11/–11 from the centre of symmetry. This is also the case for most native NagC sites, but not the nagE operator, which thus looks like a potential Mlc target. The nagE operator does exhibit a higher affinity for Mlc than NagC, but no regulation of nagE by physiological concentrations of Mlc was detected in vivo. Regulation of wild-type nagE by NagC is achieved because of the chelation effect due to a second high affinity NagC operator covering the nagB promoter. Replacing the A/T at +11/–11 with C/G allows repression by NagC in the absence of the nagB operator.
Resumo:
Gene expression profiling provides powerful analyses of transcriptional responses to cellular perturbation. In contrast to DNA array-based methods, reporter gene technology has been underused for this application. Here we describe a genomewide, genome-registered collection of Escherichia coli bioluminescent reporter gene fusions. DNA sequences from plasmid-borne, random fusions of E. coli chromosomal DNA to a Photorhabdus luminescens luxCDABE reporter allowed precise mapping of each fusion. The utility of this collection covering about 30% of the transcriptional units was tested by analyzing individual fusions representative of heat shock, SOS, OxyR, SoxRS, and cya/crp stress-responsive regulons. Each fusion strain responded as anticipated to environmental conditions known to activate the corresponding regulatory circuit. Thus, the collection mirrors E. coli's transcriptional wiring diagram. This genomewide collection of gene fusions provides an independent test of results from other gene expression analyses. Accordingly, a DNA microarray-based analysis of mitomycin C-treated E. coli indicated elevated expression of expected and unanticipated genes. Selected luxCDABE fusions corresponding to these up-regulated genes were used to confirm or contradict the DNA microarray results. The power of partnering gene fusion and DNA microarray technology to discover promoters and define operons was demonstrated when data from both suggested that a cluster of 20 genes encoding production of type I extracellular polysaccharide in E. coli form a single operon.
Resumo:
U2449 is one of many invariant residues in the central loop of domain V of 23S rRNA, a region that constitutes part of the peptidyltransferase center of the ribosome. In Escherichia coli, this U is post-transcriptionally modified to dihydrouridine (D) and is the only D modification found in E.coli rRNAs. To analyze the role of this base and its modification in ribosomal function, all three base substitutions were constructed on a plasmid copy of the rrnB operon and assayed for their ability to support cell growth in a strain of E.coli lacking chromosomal rrn operons. Both purine substitution mutations were not viable. However, growth and antibiotic sensitivity of cells expressing only the mutant D2449C rRNA was indistinguishable from wild type. We conclude that while a pyrimidine is required at position 2449 for proper ribosomal function, the D modification is dispensable.