20 resultados para Nascent Entrepreneurship


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel RNase activity was identified in a yeast RNA polymerase I (pol I) in vitro transcription system. Transcript cleavage occurred at the 3′ end and was dependent on the presence of ternary pol I/DNA/RNA complexes and an additional protein factor not identical to transcription factor IIS (TFIIS). Transcript cleavage was observed both on arrested complexes at the linearized ends of the transcribed DNA and on intrinsic blocks of the DNA template. Shortened transcripts that remained associated within the ternary complexes were capable of resuming RNA chain elongation. Possible functions of the nuclease for transcript elongation or termination are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the dynamics of transcript extrusion from Escherichia coli RNA polymerase (RNAP), we used degradation of the RNA by RNases T1 and A in a series of consecutive elongation complexes (ECs). In intact ECs, even extremely high doses of the RNases were unable to cut the RNA closer than 14–16 nt from the 3′ end. Our results prove that all of the cuts detected within the 14-nt zone are derived from the EC that is denatured during inactivation of the RNases. The protected zone monotonously translocates along the RNA after addition of new nucleotides to the transcript. The upstream region of the RNA heading toward the 5′ end is cleaved and dissociated from the EC, with no effect on the stability and activity of the EC. Most of the current data suggest that an 8- to 10-nt RNA⋅DNA hybrid is formed in the EC. Here, we show that an 8- to 10-nt RNA obtained by truncating the RNase-generated products further with either GreB or pyrophosphate is sufficient for the high stability and activity of the EC. This result suggests that the transcript–RNAP interaction that is required for holding the EC together can be limited to the RNA region involved in the 8- to 10-nt RNA⋅DNA hybrid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins with RER-specific signal sequences are cotranslationally translocated across the rough endoplasmic reticulum through a proteinaceous channel composed of oligomers of the Sec61 complex. The Sec61 complex also binds ribosomes with high affinity. The dual function of the Sec61 complex necessitates a mechanism to prevent signal sequence-independent binding of ribosomes to the translocation channel. We have examined the hypothesis that the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC), respectively, act as positive and negative regulatory factors to mediate the signal sequence-specific attachment of the ribosome-nascent chain complex (RNC) to the translocation channel. Here, SRP-independent translocation of a nascent secretory polypeptide was shown to occur in the presence of endogenous wheat germ or rabbit reticulocyte NAC. Furthermore, SRP markedly enhanced RNC binding to the translocation channel irrespective of the presence of NAC. Binding of RNCs, but not SRP-RNCs, to the Sec61 complex is competitively inhibited by 80S ribosomes. Thus, the SRP-dependent targeting pathway provides a mechanism for delivery of RNCs to the translocation channel that is not inhibited by the nonselective interaction between the ribosome and the Sec61 complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using HeLa cells, we have developed methods to determine 1) the number of RNA polymerases that are active at any moment, 2) the number of transcription sites, and 3) the number of polymerases associated with one transcription unit. To count engaged polymerases, cells were encapsulated in agarose, permeabilized, treated with ribonuclease, and the now-truncated transcripts extended in [32P]uridine triphosphate; then, the number of growing transcripts was calculated from the total number of nucleotides incorporated and the average increment in length of the transcripts. Approximately 15,000 transcripts were elongated by polymerase I, and ∼75,000 were elongated by polymerases II and III. Transcription sites were detected after the cells were grown in bromouridine for <2.5 min, after which the resulting bromo-RNA was labeled with gold particles; electron microscopy showed that most extranucleolar transcripts were concentrated in ∼2400 sites with diameters of ∼80 nm. The number of polymerases associated with a transcription unit was counted after templates were spread over a large area; most extranucleolar units were associated with one elongating complex. These results suggest that many templates are attached in a “cloud” of loops around a site; each site, or transcription “factory,” would contain ∼30 active polymerases and associated transcripts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide–associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unusual feature of the mammalian genome is the number of genes exhibiting monoallelic expression. Recently random monoallelic expression of autosomal genes has been reported for olfactory and Ly-49 NK receptor genes, as well as for Il-2, Il-4 and Pax5. RNA fluorescence in situ hybridization (FISH) has been exploited to monitor allelic expression by visualizing the number of sites of transcription in individual nuclei. However, the sensitivity of this technique is difficult to determine for a given gene. We show that by combining DNA and RNA FISH it is possible to control for the hybridization efficiency and the accessibility and visibility of fluorescent probes within the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication forks formed at bacterial origins often encounter template roadblocks in the form of DNA adducts and frozen protein–DNA complexes, leading to replication-fork stalling and inactivation. Subsequent correction of the corrupting template lesion and origin-independent assembly of a new replisome therefore are required for survival of the bacterium. A number of models for replication-fork restart under these conditions posit that nascent strand regression at the stalled fork generates a Holliday junction that is a substrate for subsequent processing by recombination and repair enzymes. We show here that early replication intermediates containing replication forks stalled in vitro by the accumulation of excess positive supercoils could be cleaved by the Holliday junction resolvases RusA and RuvC. Cleavage by RusA was inhibited by the presence of RuvA and was stimulated by RecG, confirming the presence of Holliday junctions in the replication intermediate and supporting the previous proposal that RecG could catalyze nascent strand regression at stalled replication forks. Furthermore, RecG promoted Holliday junction formation when replication intermediates in which the replisome had been inactivated were negatively supercoiled, suggesting that under intracellular conditions, the action of RecG, or helicases with similar activities, is necessary for the catalysis of nascent strand regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins anchored to the cell membrane via a glycosylphosphatidylinositol (GPI) moiety are found in all eukaryotes. After NH2-terminal peptide cleavage of the nascent protein by the signal peptidase, a second COOH-terminal signal peptide is cleaved with the concomitant addition of the GPI unit. The proposed mechanism of the GPI transfer is a transamidation reaction that involves the formation of an activated carbonyl intermediate (enzyme-substrate complex) with the ethanolamine moiety of the preassembled GPI unit serving as a nucleophile. Other nucleophilic acceptors like hydrazine (HDZ) and hydroxylamine have been shown to be possible alternate substrates for GPI. Since GPI has yet to be purified, the use of readily available nucleophilic substitutes such as HDZ and hydroxylamine is a viable alternative to study COOH-terminal processing by the putative transamidase. As a first step in developing a soluble system to study this process, we have examined the amino acid requirements at the COOH terminus for the transamidation reaction using HDZ as the nucleophilic acceptor instead of GPI. The hydrazide-forming reaction shows identical amino acid requirement profiles to that of GPI anchor addition. Additionally, we have studied other parameters relating to the kinetics of the transamidation reaction in the context of rough microsomal membranes. The findings with HDZ provide further evidence for the transamidase nature of the enzyme and also provide a starting point for development of a soluble assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA polymerases encounter specific DNA sites at which RNA chain elongation takes place in the absence of enzyme translocation in a process called discontinuous elongation. For RNA polymerase II, at least some of these sequences also provoke transcriptional arrest where renewed RNA polymerization requires elongation factor SII. Recent elongation models suggest the occupancy of a site within RNA polymerase that accommodates nascent RNA during discontinuous elongation. Here we have probed the extent of nascent RNA extruded from RNA polymerase II as it approaches, encounters, and departs an arrest site. Just upstream of an arrest site, 17-19 nucleotides of the RNA 3'-end are protected from exhaustive digestion by exogenous ribonuclease probes. As RNA is elongated to the arrest site, the enzyme does not translocate and the protected RNA becomes correspondingly larger, up to 27 nucleotides in length. After the enzyme passes the arrest site, the protected RNA is again the 18-nucleotide species typical of an elongation-competent complex. These findings identify an extended RNA product groove in arrested RNA polymerase II that is probably identical to that emptied during SII-activated RNA cleavage, a process required for the resumption of elongation. Unlike Escherichia coli RNA polymerase at a terminator, arrested RNA polymerase II does not release its RNA but can reestablish the normal elongation mode downstream of an arrest site. Discontinuous elongation probably represents a structural change that precedes, but may not be sufficient for, arrest by RNA polymerase II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correct folding of newly synthesized proteins is proposed to be assisted by molecular chaperones and folding catalysts. To identify cellular factors involved in the initial stages of this process we searched for proteins associated with nascent polypeptide chains. In an Escherichia coli transcription/translation system synthesizing beta-galactosidase we identified a 58-kDa protein which associated with translating ribosomes but dissociated from these ribosomes upon release of nascent beta-galactosidase. N-terminal sequencing identified it as trigger factor, previously implicated in protein secretion. Direct evidence for association of trigger factor with nascent polypeptide chains was obtained by crosslinking. In a wheat germ translation system complemented with E. coli lysates, epsilon-4-(3-trifluoromethyldiazirino)benzoic acid-lysine residues were incorporated into nascent secretory preprolactin and a nonsecretory preprolactin mutant. Trigger factor crosslinked to both types of nascent chains, provided they were ribosome bound. Trigger factor contains key residues of the substrate-binding pocket of FK506-binding protein-type peptidyl-prolyl-cis/trans-isomerases and has prolyl isomerase activity in vitro. We propose that trigger factor is a folding catalyst acting cotranslationally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal peptides direct the cotranslational targeting of nascent polypeptides to the endoplasmic reticulum (ER). It is currently believed that the signal recognition particle (SRP) mediates this targeting by first binding to signal peptides and then by directing the ribosome/nascent chain/SRP complex to the SRP receptor at the ER. We show that ribosomes can mediate targeting by directly binding to translocation sites. When purified away from cytosolic factors, including SRP and nascent-polypeptide-associated complex (NAC), in vitro assembled translation intermediates representing ribosome/nascent-chain complexes efficiently bound to microsomal membranes, and their nascent polypeptides could subsequently be efficiently translocated. Because removal of cytosolic factors from the ribosome/nascent-chain complexes also resulted in mistargeting of signalless nascent polypeptides, we previously investigated whether readdition of cytosolic factors, such as NAC and SRP, could restore fidelity to targeting. Without SRP, NAC prevented all nascent-chain-containing ribosomes from binding to the ER membrane. Furthermore, SRP prevented NAC from blocking ribosome-membrane association only when the nascent polypeptide contained a signal. Thus, NAC is a global ribosome-binding prevention factor regulated in activity by signal-peptide-directed SRP binding. A model presents ribosomes as the targeting vectors for delivering nascent polypeptides to translocation sites. In conjunction with signal peptides, SRP and NAC contribute to this specificity of ribosomal function by regulating exposure of a ribosomal membrane attachment site that binds to receptors in the ER membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptides of 5 and 8 residues encoded by the leaders of attenuation regulated chloramphenicol-resistance genes inhibit the peptidyltransferase of microorganisms from the three kingdoms. Therefore, the ribosomal target for the peptides is likely to be a conserved structure and/or sequence. The inhibitor peptides "footprint" to nucleotides of domain V in large subunit rRNA when peptide-ribosome complexes are probed with dimethyl sulfate. Accordingly, rRNA was examined as a candidate for the site of peptide binding. Inhibitor peptides MVKTD and MSTSKNAD were mixed with rRNA phenol-extracted from Escherichia coli ribosomes. The conformation of the RNA was then probed by limited digestion with nucleases that cleave at single-stranded (T1 endonuclease) and double-stranded (V1 endonuclease) sites. Both peptides selectively altered the susceptibility of domains IV and V of 23S rRNA to digestion by T1 endonuclease. Peptide effects on cleavage by V1 nuclease were observed only in domain V. The T1 nuclease susceptibility of domain V of in vitro-transcribed 23S rRNA was also altered by the peptides, demonstrating that peptide binding to the rRNA is independent of ribosomal protein. We propose the peptides MVKTD and MSTSKNAD perturb peptidyltransferase center catalytic activities by altering the conformation of domains IV and V of 23S rRNA. These findings provide a general mechanism through which nascent peptides may cis-regulate the catalytic activities of translating ribosomes.