23 resultados para Mariner-like element


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse has become an increasingly important organism for modeling human diseases and for determining gene function in a mammalian context. Unfortunately, transposon-tagged mutagenesis, one of the most valuable tools for functional genomics, still is not available in this organism. On the other hand, it has long been speculated that members of the Tc1/mariner-like elements may be less dependent on host factors and, hence, can be introduced into heterologous organisms. However, this prediction has not been realized in mice. We report here the chromosomal transposition of the Sleeping Beauty (SB) element in mouse embryonic stem cells, providing evidence that it can be used as an in vivo mutagen in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many stress proteins and their cognates function as molecular chaperones or as components of proteolytic systems. Viral infection can stimulate synthesis of stress proteins and particular associations of viral and stress proteins have been documented. However, demonstrations of functions for stress proteins in viral life cycles are few. We have initiated an investigation of the roles of stress proteins in eukaryotic viral life cycles using as a model the Ty3 retrovirus-like element of Saccharomyces cerevisiae. During stress, Ty3 transposition is inhibited; Ty3 DNA is not synthesized and, although precursor proteins are detected, mature Ty3 proteins and virus-like particles (VLPs) do not accumulate. The same phenotype is observed in the constitutively stressed ssa1 ssa2 mutant, which lacks two cytoplasmic members of the hsp70 family of chaperones. Ty3 VLPs preformed under nonstress conditions are degraded more rapidly if cells are shifted from 30 degrees C to 37 degrees C. These results suggest that Ty3 VLPs are destroyed by cellular stress proteins. Elevated expression of the yeast UBP3 gene, which encodes a protease that removes ubiquitin from proteins, allows mature Ty3 proteins and VLPs to accumulate in the ssa1 ssa2 mutant, suggesting that, at least under stress conditions, ubiquitination plays a role in regulating Ty3 transposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological nature of carnation small viroid-like RNA (CarSV RNA), a 275-nt circular molecule with self-cleaving hammerhead structures in its strands of both polarities, was investigated. The lack of infectivity observed in a series of transmission assays in carnation indicates that CarSV RNA, in spite of sharing structural similarities with viroid and viroid-like satellite RNAs from plants, does not belong to either of these two groups. Additional evidence in this direction comes from the observation that CarSV RNA also exists in carnation plants as DNA tandem repeats. In this respect, CarSV RNA is similar to a small transcript of a tandemly repeated DNA sequence of the newt genome. Moreover, CarSV and newt RNAs have similarities in their sequences as well as in some characteristics of their corresponding hammerhead structures. Further analyses have revealed that CarSV DNA is found directly fused to DNA sequences of carnation etched ring caulimovirus, a pararetrovirus, most likely in the form of an extrachromosomal element. The properties of the CarSV RNA/DNA system are those of a retroviroid-like element having some features in common with viroid and viroid-like satellite RNAs from plants and others with the newt transcript.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 1747-bp insertion within a lignin peroxidase allele of Phanerochaete chrysosporium BKM-F-1767 is described. Pce1, the element, lies immediately adjacent to the fourth intron of lip12. Southern blots reveal the presence of Pce1-homologous sequences in other P. chrysosporium strains. Transposon-like features include inverted terminal repeats and a dinucleotide (TA) target duplication. Atypical of transposons, Pce1 is present at very low copy numbers (one to five copies), and conserved transposase motifs are lacking. The mutation transcriptionally inactivates lip12 and is inherited in a 1:1 Mendelian fashion among haploid progeny. Thus, Pce1 is a transposon-like element that may play a significant role in generating ligninolytic variation in certain P. chrysosporium strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sbeIIa and sbeIIb genes, encoding starch-branching enzyme (SBE) IIa and SBEIIb in barley (Hordeum vulgare L.), have been isolated. The 5′ portions of the two genes are strongly divergent, primarily due to the 2064-nucleotide-long intron 2 in sbeIIb. The sequence of this intron shows that it contains a retro-transposon-like element. Expression of sbeIIb but not sbeIIa was found to be endosperm specific. The temporal expression patterns for sbeIIa and sbeIIb were similar and peaked around 12 d after pollination. DNA gel-blot analysis demonstrated that sbeIIa and sbeIIb are both single-copy genes in the barley genome. By fluorescence in situ hybridization, the sbeIIa and sbeIIb genes were mapped to chromosomes 2 and 5, respectively. The cDNA clones for SBEIIa and SBEIIb were isolated and sequenced. The amino acid sequences of SBEIIa and SBEIIb were almost 80% identical. The major structural difference between the two enzymes was the presence of a 94-amino acid N-terminal extension in the SBEIIb precursor. The (β/α)8-barrel topology of the α-amylase superfamily and the catalytic residues implicated in branching enzymes are conserved in both barley enzymes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although the control of carbon fixation and nitrogen assimilation has been studied in detail, relatively little is known about the regulation of carbon and nitrogen flow into amino acids. In this paper we report our study of the metabolic regulation of expression of an Arabidopsis aspartate kinase/homoserine dehydrogenase (AK/HSD) gene, which encodes two linked key enzymes in the biosynthetic pathway of aspartate family amino acids. Northern blot analyses, as well as expression of chimeric AK/HSD-β-glucuronidase constructs, have shown that the expression of this gene is regulated by the photosynthesis-related metabolites sucrose and phosphate but not by nitrogenous compounds. In addition, analysis of AK/HSD promoter deletions suggested that a CTTGACTCTA sequence, resembling the binding site for the yeast GCN4 transcription factor, is likely to play a functional role in the expression of this gene. Nevertheless, longer promoter fragments, lacking the GCN4-like element, were still able to confer sugar inducibility, implying that the metabolic regulation of this gene is apparently obtained by multiple and redundant promoter sequences. The present and previous studies suggest that the conversion of aspartate into either the storage amino acid asparagine or aspartate family amino acids is subject to a coordinated, reciprocal metabolic control, and this biochemical branch point is a part of a larger, coordinated regulatory mechanism of nitrogen and carbon storage and utilization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Caveolae form the terminus for a major pathway of intracellular free cholesterol (FC) transport. Caveolin mRNA levels in confluent human skin fibroblasts were up-regulated following increased uptake of low density lipoprotein (LDL) FC. The increase induced by FC was not associated with detectable change in mRNA stability, indicating that caveolin mRNA levels were mediated at the level of gene transcription. A total of 924 bp of 5′ flanking region of the caveolin gene were cloned and sequenced. The promoter sequence included three G+C-rich potential sterol regulatory elements (SREs), a CAAT sequence and a Sp1 consensus sequence. Deletional mutagenesis of individual SRE-like sequences indicated that of these two (at −646 and −395 bp) were essential for the increased transcription rates mediated by LDL-FC, whereas the third was inconsequential. Gel shift analysis of protein binding from nuclear extracts to these caveolin promoter DNA sequences, together with DNase I footprinting, confirmed nucleoprotein binding to the SRE-like elements as part of the transcriptional response to LDL-FC. A supershift obtained with antibody to SRE-binding protein 1 (SPEBP-1) indicated that this protein binds at −395 bp. There was no reaction at −395 bp with anti-Sp1 antibody nor with either antibody at −646 bp. The cysteine protease inhibitor N-acetyl-leu-leu-norleucinal (ALLN), which inhibits SREBP catabolism, superinhibited caveolin mRNA levels regardless of LDL-FC. This finding suggests that SREBP inhibits caveolin gene transcription in contrast to its stimulating effect on other promoters. The findings of this study are consistent with the postulated role for caveolin as a regulator of cellular FC homeostasis in quiescent peripheral cells, and the coordinate regulation by SREBP of FC influx and efflux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soybean genome hosts a family of several hundred, relatively homogeneous copies of a large, copia/Ty1-like retroelement designated SIRE-1. A copy of this element has been recovered from a Glycine max genomic library. DNA sequence analysis of two SIRE-1 subclones revealed that SIRE-1 contains a long, uninterrupted, ORF between the 3′ end of the pol ORF and the 3′ long terminal repeat (LTR), a region that harbors the env gene in retroviral genomes. Conceptual translation of this second ORF produces a 70-kDa protein. Computer analyses of the amino acid sequence predicted patterns of transmembrane domains, α-helices, and coiled coils strikingly similar to those found in mammalian retroviral envelope proteins. In addition, a 65-residue, proline-rich domain is characterized by a strong amino acid compositional bias virtually identical to that of the 60-amino acid, proline-rich neutralization domain of the feline leukemia virus surface protein. The assignment of SIRE-1 to the copia/Ty1 family was confirmed by comparison of the conceptual translation of its reverse transcriptase-like domain with those of other retroelements. This finding suggests the presence of a proretrovirus in a plant genome and is the strongest evidence to date for the existence of a retrovirus-like genome closely related to copia/Ty1 retrotransposons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Xlim-1 gene is activated in the late blastula stage of Xenopus embryogenesis in the mesoderm, and its RNA product becomes concentrated in the Spemann organizer at early gastrula stage. A major regulator of early expression of Xlim-1 is activin or an activin-like signal. We report experiments aiming to identify the activin response element in the Xlim-1 gene. The 5′ flanking region of the gene contains a constitutive promoter that is not activin responsive, whereas sequences in the first intron mediate repression of basal promoter activity and stimulation by activin. An intron-derived fragment of 212 nt is the smallest element that could mediate activin responsiveness. Nodal and act-Vg1, factors with signaling properties similar to activin, also stimulated Xlim-1 reporter constructs, whereas BMP-4 did not stimulate or repress the constructs. The mechanism of activin regulation of Xlim-1 and the sequence of the response element are distinct from activin response elements of other genes studied so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone mRNAs are naturally intronless and accumulate efficiently in the cytoplasm. To learn whether there are cis-acting sequences within histone genes that allow efficient cytoplasmic accumulation of RNAs, we made recombinant constructs in which sequences from the mouse H2a gene were cloned into a human β-globin cDNA. By using transient transfection and RNase protection analysis, we demonstrate here that a 100-bp sequence within the H2a coding region permits efficient cytoplasmic accumulation of the globin cDNA transcripts. We also show that this sequence appears to suppress splicing and can functionally replace Rev and the Rev-responsive element in the cytoplasmic accumulation of unspliced HIV-1-related mRNAs. Like the Rev-responsive element, this sequence acts in an orientation-dependent manner. We thus propose that the sequence identified here may be a member of the cis-acting elements that facilitate the cytoplasmic accumulation of naturally intronless gene transcripts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholesterol feeding reduces the mRNAs encoding multiple enzymes in the cholesterol biosynthetic pathway and the low density lipoprotein receptor in livers of hamsters. Here we show that cholesterol feeding also reduces the levels of the nuclear NH2-terminal domains of sterol regulatory element binding proteins (SREBPs), which activate transcription of sterol-regulated genes. We show that livers of hamsters, like those of mice and humans, predominantly produce SREBP-2 and the 1c isoform of SREBP-1. Both are produced as membrane-bound precursors that must be proteolyzed to release the transcriptionally active NH2-terminal domains. Diets containing 0.1% to 1.0% cholesterol decreased the amount of nuclear SREBP-1c without affecting the amount of the membrane precursor or its mRNA, suggesting that cholesterol inhibits the proteolytic processing of SREBP-1 in liver as it does in cultured cells. Cholesterol also appeared to reduce the proteolytic processing of SREBP-2. In addition, at high levels of dietary cholesterol the mRNA encoding SREBP-2 declined and the amount of the precursor also fell, suggesting that cholesterol accumulation also may inhibit transcription of the SREBP-2 gene. The high-cholesterol diets reduced the amount of low density lipoprotein receptor mRNA by 30% and produced a more profound 70–90% reduction in mRNAs encoding 3-hydroxy-3-methylglutaryl CoA synthase and reductase. Treatment with lovastatin and Colestipol, which increases hepatic demands for cholesterol, increased the amount of SREBP-2 mRNA as well as the precursor and nuclear forms of the protein. This treatment caused a reciprocal decline in SREBP-1c mRNA and protein. Considered together, these data suggest that SREBPs play important roles in controlling transcription of sterol-regulated genes in liver, as they do in cultured cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytoplasmic heritable determinant [PSI+] of the yeast Saccharomyces cerevisiae reflects the prion-like properties of the chromosome-encoded protein Sup35p. This protein is known to be an essential eukaryote polypeptide release factor, namely eRF3. In a [PSI+] background, the prion conformer of Sup35p forms large oligomers, which results in the intracellular depletion of functional release factor and hence inefficient translation termination. We have investigated the process by which the [PSI+] determinant can be efficiently eliminated from strains, by growth in the presence of the protein denaturant guanidine hydrochloride (GuHCl). Strains are “cured” of [PSI+] by millimolar concentrations of GuHCl, well below that normally required for protein denaturation. Here we provide evidence indicating that the elimination of the [PSI+] determinant is not derived from the direct dissolution of self-replicating [PSI+] seeds by GuHCl. Although GuHCl does elicit a moderate stress response, the elimination of [PSI+] is not enhanced by stress, and furthermore, exhibits an absolute requirement for continued cell division. We propose that GuHCl inhibits a critical event in the propagation of the prion conformer and demonstrate that the kinetics of curing by GuHCl fit a random segregation model whereby the heritable [PSI+] element is diluted from a culture, after the total inhibition of prion replication by GuHCl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin negatively regulates expression of the insulin-like growth factor binding protein 1 (IGFBP-1) gene by means of an insulin-responsive element (IRE) that also contributes to glucocorticoid stimulation of this gene. We find that the Caenorhabditis elegans protein DAF-16 binds the IGFBP-1⋅IRE with specificity similar to that of the forkhead (FKH) factor(s) that act both to enhance glucocorticoid responsiveness and to mediate the negative effect of insulin at this site. In HepG2 cells, DAF-16 and its mammalian homologs, FKHR, FKHRL1, and AFX, activate transcription through the IGFBP-1⋅IRE; this effect is inhibited by the viral oncoprotein E1A, but not by mutants of E1A that fail to interact with the coactivator p300/CREB-binding protein (CBP). We show that DAF-16 and FKHR can interact with both the KIX and E1A/SRC interaction domains of p300/CBP, as well as the steroid receptor coactivator (SRC). A C-terminal deletion mutant of DAF-16 that is nonfunctional in C. elegans fails to bind the KIX domain of CBP, fails to activate transcription through the IGFBP-1⋅IRE, and inhibits activation of the IGFBP-1 promoter by glucocorticoids. Thus, the interaction of DAF-16 homologs with the KIX domain of CBP is essential to basal and glucocorticoid-stimulated transactivation. Although AFX interacts with the KIX domain of CBP, it does not interact with SRC and does not respond to glucocorticoids or insulin. Thus, we conclude that DAF-16 and FKHR act as accessory factors to the glucocorticoid response, by recruiting the p300/CBP/SRC coactivator complex to an FKH factor site in the IGFBP-1 promoter, which allows the cell to integrate the effects of glucocorticoids and insulin on genes that carry this site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3′ to 5′ direction along the bound strand in an ATP- and Mg2+-dependent fashion. The enzyme is not processive and can also unwind partial RNA–RNA duplexes such as HDH IV and HDH VIII. The Mr determined by SDS–PAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the ‘FUSE’ DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141–147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.