21 resultados para MARROW-TRANSPLANTATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantations of fully allogeneic, autoimmune-resistant T-cell-depleted marrow (TCDM) plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice were carried out to investigate the ability of the mixed bone marrow transplantation (BMT) to prevent development of autoimmune disease and, at the same time, to reconstitute fully the immunity functions of heavily irradiated BXSB recipients. Male BXSB mice were engrafted with mixed TCDM from both allogeneic, autoimmune-resistant BALB/c mice and syngeneic, autoimmune-prone BXSB mice. BMT with mixed TCDM from both resistant and susceptible strains of mice (mixed BMT) prolonged the median life span and inhibited development of glomerulonephritis in BXSB mice. BMT with mixed TCDM also prevented the formation of anti-DNA antibodies that is typically observed in male mice of this strain. Moreover, mixed BMT reconstituted primary antibody production in BXSB recipients, so that no annoying immunodeficiencies that are regularly observed in fully allogeneic chimeras were present in the recipient of the mixed TCDM. These findings indicate that transplanting allogeneic, autoimmune-resistant TCDM plus syngeneic, autoimmune-prone TCDM into lethally irradiated BXSB mice prevents development of autoimmune disease in this strain of mice. In addition, this dual BMT reconstitutes the immunity functions and avoids the immunodeficiencies that occur regularly in fully allogeneic chimeras after total-body irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabry disease is an X-linked metabolic disorder caused by a deficiency of α-galactosidase A (α-Gal A). The enzyme defect leads to the systemic accumulation of glycosphingolipids with α-galactosyl moieties consisting predominantly of globotriaosylceramide (Gb3). In patients with this disorder, glycolipid deposition in endothelial cells leads to renal failure and cardiac and cerebrovascular disease. Recently, we generated α-Gal A gene knockout mouse lines and described the phenotype of 10-week-old mice. In the present study, we characterize the progression of the disease with aging and explore the effects of bone marrow transplantation (BMT) on the phenotype. Histopathological analysis of α-Gal A −/0 mice revealed subclinical lesions in the Kupffer cells in the liver and macrophages in the skin with no gross lesions in the endothelial cells. Gb3 accumulation and pathological lesions in the affected organs increased with age. Treatment with BMT from the wild-type mice resulted in the clearance of accumulated Gb3 in the liver, spleen, and heart with concomitant elevation of α-Gal A activity. These findings suggest that BMT may have a potential role in the management of patients with Fabry disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids in the central nervous system. The glycolipid storage causes severe neurodegeneration through a poorly understood pathogenic mechanism. In symptomatic Sandhoff disease mice, apoptotic neuronal cell death was prominent in the caudal regions of the brain. cDNA microarray analysis to monitor gene expression during neuronal cell death revealed an upregulation of genes related to an inflammatory process dominated by activated microglia. Activated microglial expansion, based on gene expression and histologic analysis, was found to precede massive neuronal death. Extensive microglia activation also was detected in a human case of Sandhoff disease. Bone marrow transplantation of Sandhoff disease mice suppressed both the explosive expansion of activated microglia and the neuronal cell death without detectable decreases in neuronal GM2 ganglioside storage. These results suggest a mechanism of neurodegeneration that includes a vigorous inflammatory response as an important component. Thus, this lysosomal storage disease has parallels to other neurodegenerative disorders, such as Alzheimer's and prion diseases, where inflammatory processes are believed to participate directly in neuronal cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

von Willebrand factor (vWF) is essential for the induction of occlusive thrombosis in stenosed and injured pig arteries and for normal hemostasis. To separate the relative contribution of plasma and platelet vWF to arterial thrombosis, we produced chimeric normal and von Willebrand disease pigs by crossed bone marrow transplantation; von Willebrand disease (vWD) pigs were engrafted with normal pig bone marrow and normal pigs were engrafted with vWD bone marrow. Thrombosis developed in the chimeric normal pigs that showed normal levels of plasma vWF and an absence of platelet vWF; but no thrombosis occurred in the chimeric vWD pigs that demonstrated normal platelet vWF and an absence of plasma vWF. The ear bleeding times of the chimeric pigs were partially corrected by endogenous plasma vWF but not by platelet vWF. Our animal model demonstrated that vWF in the plasma compartment is essential for the development of arterial thrombosis and that it also contributes to the maintenance of bleeding time and hemostasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A major problem facing the effective treatment of patients with cancer is how to get the specific antitumor agent into every tumor cell. In this report we describe the use of a strategy that, by using retroviral vectors encoding a truncated human CD5 cDNA, allows the selection of only the infected cells, and we show the ability to obtain, before bone marrow transplantation, a population of 5-fluouraci-treated murine bone marrow cells that are 100% marked. This marked population of bone marrow cells is able to reconstitute the hematopoietic system in lethally irradiated mice, indicating that the surface marker lacks deleterious effects on the functionality of bone marrow cells. No gross abnormalities in hematopoiesis were detected in mice repopulated with CD5-expressing cells. Nevertheless, a significant proportion of the hematopoietic cells no longer expresses the surface marker CD5 in the 9-month-old recipient mice. This transcriptional inactivity of the proviral long terminal repeat (LTR) was accompanied by de novo methylation of the proviral sequences. Our results show that the use of the CD5 as a retrovirally encoded marker enables the rapid, efficient, and nontoxic selection in vitro of infected primary cells, which can entirely reconstitute the hematopoietic system in mice. These results should now greatly enhance the power of studies aimed at addressing questions such as generation of cancer-negative hematopoiesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies have demonstrated the importance of recipient HLA-DRB1 allele disparity in the development of acute graft-versus-host disease (GVHD) after unrelated donor marrow transplantation. The role of HLA-DQB1 allele disparity in this clinical setting is unknown. To elucidate the biological importance of HLA-DQB1, we conducted a retrospective analysis of 449 HLA-A, -B, and -DR serologically matched unrelated donor transplants. Molecular typing of HLA-DRB1 and HLA-DQB1 alleles revealed 335 DRB1 and DQB1 matched pairs; 41 DRB1 matched and DQB1 mismatched pairs; 48 DRB1 mismatched and DQB1 matched pairs; and 25 DRB1 and DQB1 mismatched pairs. The conditional probabilities of grades III-IV acute GVHD were 0.42, 0.61, 0.55, and 0.71, respectively. The relative risk of acute GVHD associated with a single locus HLA-DQB1 mismatch was 1.8 (1.1, 2.7; P = 0.01), and the risk associated with any HLA-DQB1 and/or HLA-DRB1 mismatch was 1.6 (1.2, 2.2; P = 0.003). These results provide evidence that HLA-DQ is a transplant antigen and suggest that evaluation of both HLA-DQB1 and HLA-DRB1 is necessary in selecting potential donors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MRL/MP-+/+ (MRL/+) mice develop pancreatitis and sialoadenitis after they reach 7 months of age. Conventional bone marrow transplantation has been found to be ineffective in the treatment of these forms of apparent autoimmune disease. Old MRL/+ mice show a dramatic thymic involution with age. Hematolymphoid reconstitution is incomplete when fetal liver cells (as a source of hemopoietic stem cells) plus fetal bone (FB; which is used to recruit stromal cells) are transplanted from immunologically normal C57BL/6 donor mice to MRL/+ female recipients. Embryonic thymus from allogeneic C57BL/6 donors was therefore engrafted along with either bone marrow or fetal hematopoietic cells (FHCs) plus fragments of adult or fetal bone. More than seventy percent of old MRL/+ mice (> 7 months) that had been given a fetal thymus (FT) transplant plus either bone marrow or FHCs and also bone fragments survived more than 100 days after treatment. The mice that received FHCs, FB, plus FT from allogeneic donors developed normal T cell and B cell functions. Serum amylase levels decreased in these mice whereas they increased in the mice that received FHCs and FB but not FT. The pancreatitis and sialoadenitis already present at the time of transplantations were fully corrected according to histological analysis by transplants of allogeneic FHCs, FB and FT in the MRL/+ mice. These findings are taken as an experimental indication that perhaps stem cell transplants along with FT grafts might represent a useful strategy for treatment of autoimmune diseases in aged humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Allogeneic bone marrow transplantation is the most effective treatment for Hurler syndrome but, since this therapy is not available to all patients, we have considered an alternative approach based on transfer and expression of the normal gene in autologous bone marrow. A retroviral vector carrying the full-length cDNA for alpha-L-iduronidase has been constructed and used to transduce bone marrow from patients with this disorder. Various gene-transfer protocols have been assessed including the effect of intensive schedules of exposure of bone marrow to viral supernatant and the influence of growth factors. With these protocols, we have demonstrated successful gene transfer into primitive CD34+ cells and subsequent enzyme expression in their maturing progeny. Also, by using long-term bone marrow cultures, we have demonstrated high levels of enzyme expression sustained for several months. The efficiency of gene transfer has been assessed by PCR analysis of hemopoietic colonies as 25-56%. No advantage has been demonstrated for the addition of growth factors or intensive viral exposure schedules. The enzyme is secreted into the medium and functional localization has been demonstrated by reversal of the phenotypic effects of lysosomal storage in macrophages. This work suggests that retroviral gene transfer into human bone marrow may offer the prospect for gene therapy of Hurler syndrome in young patients without a matched sibling donor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many cancers overexpress a member of the bcl-2 family of inhibitors of apoptosis. To determine the role of these proteins in maintaining cancer cell viability, an adenovirus vector that expresses bcl-xs, a functional inhibitor of these proteins, was constructed. Even in the absence of an exogenous apoptotic signal such as x-irradiation, this virus specifically and efficiently kills carcinoma cells arising from multiple organs including breast, colon, stomach, and neuroblasts. In contrast, normal hematopoietic progenitor cells and primitive cells capable of repopulating severe combined immunodeficient mice were refractory to killing by the bcl-xs adenovirus. These results suggest that Bcl-2 family members are required for survival of cancer cells derived from solid tissues. The bcl-xs adenovirus vector may prove useful in killing cancer cells contaminating the bone marrow of patients undergoing autologous bone marrow transplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aging in vivo and cell division in vitro are associated with telomere shortening. Several lines of evidence suggest that telomere length may be a good predictor of the long term replicative capacity of cells. To investigate the natural fate of chromosome telomeres of hematopoietic stem cells in vivo, we measured the telomere length of peripheral blood granulocytes from 11 fully engrafted bone marrow transplant recipients and from their respective donors. In 10 of 11 donor–recipient pairs, the telomere length was significantly reduced in the recipient and the extent of reduction correlated inversely with the number of nucleated cells infused. These data provide internally controlled in vivo evidence that, concomitantly with their proliferation, hematopoietic stem cells lose telomere length; it is possible that, as a result, their proliferative potential is reduced. These findings must be taken into account when developing new protocols in which few stem cells are used for bone marrow transplantation or for gene therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme α-galactosidase A (α-gal A). This enzyme deficiency leads to impaired catabolism of α-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction and early death. Although enzyme replacement therapy and bone marrow transplantation have shown promise in the murine analog of Fabry disease, gene therapy holds a strong potential for treating this disease in humans. Delivery of the normal α-gal A gene (cDNA) into a depot organ such as liver may be sufficient to elicit corrective circulating levels of the deficient enzyme. To investigate this possibility, a recombinant adeno-associated viral vector encoding human α-gal A (rAAV-AGA) was constructed and injected into the hepatic portal vein of Fabry mice. Two weeks postinjection, α-gal A activity in the livers of rAAV-AGA-injected Fabry mice was 20–35% of that of the normal mice. The transduced animals continued to show higher α-gal A levels in liver and other tissues compared with the untouched Fabry controls as long as 6 months after treatment. In parallel to the elevated enzyme levels, we see significant reductions in Gb3 levels to near normal at 2 and 5 weeks posttreatment. The lower Gb3 levels continued in liver, spleen, and heart, up to 25 weeks with no significant immune response to the virus or α-gal A. Also, no signs of liver toxicity occurred after the rAAV-AGA administration. These findings suggest that an AAV-mediated gene transfer may be useful for the treatment of Fabry disease and possibly other metabolic disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on transplantation studies with bone marrow cultured under various conditions, a role of interleukin 11 (IL-11) in the self-renewal and/or the differentiation commitment of hematopoietic stem cells has been indicated. To better evaluate the in vivo effects of IL-11 on stem/progenitor cell biology, lethally irradiated mice were serially transplanted with bone marrow cells transduced with a defective retrovirus, termed MSCV-mIL-11, carrying the murine IL-11 (mIL-11) cDNA and the bacterial neomycin phosphotransferase (neo) gene. High serum levels (i.e., > 1 ng/ml) of mIL-11 in all (20/20) primary and 86% (12/14) of secondary long-term reconstituted mice, as well as 86% (12/14) of tertiary recipients examined at 6 weeks posttransplant, demonstrated persistence of vector expression subsequent to transduction of bone marrow precursors functionally definable as totipotent hematopoietic stem cells. In agreement with results obtained with human IL-11 in other myeloablation models, ectopic mIL-11 expression accelerated recovery of platelets, neutrophils, and, to some extent, total leukocytes while preferentially increasing peripheral platelet counts in fully reconstituted mice. When analyzed 5 months posttransplant, tertiary MSCV-mIL-11 recipients had a significantly greater percentage of G418-resistant colony-forming cells in their bone marrow compared with control MSCV animals. Collectively, these data show that persistent stimulation of platelet production by IL-11 is not detrimental to stem cell repopulating ability; rather, they suggest that IL-11 expression in vivo may have resulted in enhanced maintenance of the most primitive hematopoietic stem cell compartment. The prolonged expression achieved by the MSCV retroviral vector, despite the presence of a selectable marker, contrasts with the frequent transcriptional extinction observed with other retroviral vectors carrying two genes. These findings have potentially important implications for clinical bone marrow transplantation and gene therapy of the hematopoietic system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The long-term efficacy of gene therapy using bone marrow transplantation requires the engraftment of genetically altered totipotent hematopoietic stem cells (THSCs). Ex vivo expansion of corrected THSCs is one way to increase the efficiency of the procedure. Similarly, selective in vivo expansion of the therapeutic THSCs rather than the endogenous THSCs could favor the transplant. To test whether a conferred proliferative advantage gene can facilitate the in vitro and in vivo expansion of hematopoietic stem cells, we have generated transgenic mice expressing a truncated receptor for the growth factor erythropoietin. These mice are phenotypically normal, but when treated in vivo with exogenous erythropoietin they exhibit a marked increase in multipotent, clonogenic hematopoietic cells [colony-forming units in the spleen (CFU-S) and CFUs that give rise to granulocytes, erythroid cells, macrophages, and megakaryocytes within the same colony (CFU-GEMM)] in comparison with the wild-type mice. In addition, long-term in vitro culture of tEpoR transgenic bone marrow in the presence of erythropoietin induces exponential expansion of trilineage hematopoietic stem cells not seen with wild-type bone marrow. Thus, the truncated erythropoietin receptor gene shows promise as a means for obtaining cytokine-inducible hematopoietic stem cell proliferation to facilitate the direct targeting of THSCs and to provide a competitive repopulation advantage for transplanted therapeutic stem cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human herpesviruses 6 and 7 (HHV-6 and HHV-7) are prevalent lymphotropic viruses that infect more than 80% of children at infancy or during early childhood. Infection ranges from asymptomatic to severe disease. HHV-6B causes exanthem subitum. The virus can be recovered from peripheral blood mononuclear cells during the acute phase of exanthem subitum, but the host remains latently infected throughout life. In immunocompromised patients undergoing kidney, liver, or bone marrow transplantation latent HHV-6B is reactivated, at times causing severe or fatal disease. Here, we describe the establishment of an in vitro system for reactivation of HHV-6B and HHV-7 from latency. HHV-7 is reactivated from latently infected peripheral blood mononuclear cells by T-cell activation. HHV-6B could not be reactivated under similar conditions; however, the latent HHV-6B could be recovered after the cells were infected with HHV-7. Once reactivated, the HHV-6B genomes became prominent and the HHV-7 disappeared. We conclude that HHV-7 can provide a transacting function(s) mediating HHV-6 reactivating from latency. Understanding the activation process is critical for the development of treatments to control the activation of latent viruses so as to avoid these sometimes life threatening infections in transplant recipients.