32 resultados para Immune-mediated
Resumo:
Adenovirus (Ad) gene transfer vectors are rapidly cleared from infected hepatocytes in mice. To determine which effector mechanisms are responsible for elimination of the Ad vectors, we infected mice that were genetically compromised in immune effector pathways [perforin, Fas, or tumor necrosis factor α (TNF-α)] with the Ad vector, Ad5-chloramphenicol acetyl transferase (CAT). Mice were sacrificed at 7–60 days postinfection, and the levels of CAT expression in the liver determined by a quantitative enzymatic assay. When the livers of infected mice were harvested 28 days postinfection, the levels of CAT expression revealed that the effectors most important for the elimination of the Ad vector were TNF-α > Fas > perforin. TNF-α did not have a curative effect on infected hepatocytes, as the administration of TNF-α to infected severe combined immunodeficient mice or to infected cultures in vitro had no specific effect on virus persistence. However, TNF-α-deficient mice demonstrated a striking reduction in the leukocytic infiltration early on in the infection, suggesting that TNF-α deficiency resulted in impaired recruitment of inflammatory cells to the site of inflammation. In addition, the TNF-deficient mice had a significantly reduced humoral immune response to virus infection. These results demonstrate a dominant role of TNF-α in elimination of Ad gene transfer vectors. This result is particularly important because viral proteins that disable TNF-α function have been removed from most Ad vectors, rendering them highly susceptible to TNF-α-mediated elimination.
Resumo:
The cholangiopathies are a group of hepatobiliary diseases in which intrahepatic bile duct epithelial cells, or cholangiocytes, are the target for a variety of destructive processes, including immune-mediated damage. We tested the hypothesis that cholangitis could be induced in rodents by immunization with highly purified cholangiocytes. Inbred Wistar rats were immunized with purified hyperplastic cholangiocytes isolated after bile duct ligation from either syngeneic Wistar or allogeneic Fischer 344 rats; control rats were immunized with bovine serum albumin (BSA) or hepatocytes. After immunization with cholangiocytes, recipient animals developed histologic evidence of nonsuppurative cholangitis without inflammation in other organs; groups immunized with BSA or hepatocytes showed no cholangitis. Immunohistochemical studies revealed that portal tract infiltrates around bile ducts consisted of CD3-positive lymphocytes, some of which expressed major histocompatibility complex class II antigen; B cells and exogenous monocytes/macrophages were essentially absent. Transfer of unfractionated ConA-stimulated spleen cells from cholangiocyte-immunized (but not BSA-immunized) rats into recipients also caused nonsuppurative cholangitis. Moreover, these splenocytes from cholangiocyte-immunized (but not BSA-immunized) rats were cytotoxic in vitro for cultured rodent cholangiocytes; no cytotoxicity was observed against a rat hepatocyte cell line. Also, a specific antibody response in sera of cholangiocyte-immunized rats was demonstrated by immunoblots against cholangiocyte proteins. Finally, cholangiograms in cholangiocyte-immunized rats showed distortion and tortuosity of the entire intrahepatic biliary ductal system. This unique rodent model of experimental cholangitis demonstrates the importance of immune mechanisms in the pathogenesis of cholangitis and will prove useful in exploring the mechanisms by which the immune system targets and damages cholangiocytes.
Resumo:
The human 15-lipoxygenase (15-LO) gene was transfected into rat kidneys in vivo via intra-renal arterial injection. Three days later, acute (passive) or accelerated forms of antiglomerular basement membrane antibody-mediated glomerulonephritis were induced in transfected and nontransfected or sham-transfected controls. Studies of glomerular functions (filtration and protein excretion) and ex vivo glomerular leukotriene B4 biosynthesis at 3 hr, and up to 4 days, after induction of nephritis revealed preservation or normalization of these parameters in transfected kidneys that expressed human 15-LO mRNA and mature protein, but not in contralateral control kidneys or sham-transfected animals. The results provide in vivo-derived data supporting a direct anti-inflammatory role for 15-LO during immune-mediated tissue injury.
Resumo:
Nitric oxide (NO) has diverse roles in intercellular communication and (at higher levels) in immune-mediated cell killing. NO reacts with many cellular targets, with cell-killing effects correlated to inactivation of key enzymes through nitrosylation of their iron-sulfur centers. SoxR protein, a redox-sensitive transcription activator dependent on the oxidation state of its binuclear iron-sulfur ([2Fe-2S]) centers, is also activated in Escherichia coli on exposure to macrophage-generated NO. We show here that SoxR activation by NO occurs through direct modification of the [2Fe-2S] centers to form protein-bound dinitrosyl-iron-dithiol adducts, which we have observed both in intact bacterial cells and in purified SoxR after NO treatment. Functional activation through nitrosylation of iron-sulfur centers contrasts with the inactivation typically caused by this modification. Purified, nitrosylated SoxR has transcriptional activity similar to that of oxidized SoxR and is relatively stable. In contrast, nitrosylated SoxR is short-lived in intact cells, indicative of mechanisms that actively dispose of nitrosylated iron-sulfur centers.
Resumo:
To understand the role of the immune system in limiting HIV type 1 replication, it is critical to know to what extent the rapid turnover of productively infected cells is caused by viral cytopathicity or by immune-mediated lysis. We show that uncultured peripheral blood mononuclear cells of many patients contain cytotoxic T lymphocytes (CTL) that lyse target cells—at plausible peripheral blood mononuclear cell-to-target ratios—with half-lives of less than 1 day. In 23 patients with CD4 counts ranging from 10 to 900 per μl, the average rate of CTL-mediated lysis corresponds to a target cell half-life of 0.7 day. We develop mathematical models to calculate the turnover rate of infected cells subjected to immune-mediated lysis and viral cytopathicity and to estimate the fraction of cells that are killed by CTL as opposed to virus. The models provide new interpretations of drug treatment dynamics and explain why the observed rate of virus decline is roughly constant for different patients. We conclude that in HIV type 1 infection, CTL-mediated lysis can reduce virus load by limiting virus production, with small effects on the half-life of infected cells.
Resumo:
T cell recognition of autoantigens is critical to progressive immune-mediated destruction of islet cells, which leads to autoimmune diabetes. We identified a naturally presented autoantigen from the human islet antigen glutamic acid decarboxylase, 65-kDa isoform (GAD65), by using a combination of chromatography and mass spectrometry of peptides bound by the type I diabetes (insulin-dependent diabetes mellitus, IDDM)-associated HLA-DR4 molecule. Peptides encompassing this epitope-stimulated GAD65-specific T cells from diabetic patients and a DR4-positive individual at high risk for developing IDDM. T cell responses were antagonized by altered peptide ligands containing single amino acid modifications. This direct identification and manipulation of GAD65 epitope recognition provides an approach toward dissection of the complex CD4+ T cell response in IDDM.
Resumo:
To improve the efficiency of liposome-mediated DNA transfer as a tool for gene therapy, we have developed a fusigenic liposome vector based on principles of viral cell fusion. The fusion proteins of hemagglutinating virus of Japan (HVJ; also Sendai virus) are complexed with liposomes that encapsulate oligodeoxynucleotide or plasmid DNA. Subsequent fusion of HVJ-liposomes with plasma membranes introduces the DNA directly into the cytoplasm. In addition, a DNA-binding nuclear protein is incorporated into the HVJ-liposome particle to enhance plasmid transgene expression. The fusigenic viral liposome vector has proven to be efficient for the intracellular introduction of oligodeoxynucleotide, as well as intact genes up to 100 kbp, both in vitro and in vivo. Many animal tissues have been found to be suitable targets for fusigenic viral liposome DNA transfer. In the cardiovascular system, we have documented successful cytostatic gene therapy in models of vascular proliferative disease using antisense oligodeoxynucleotides against cell cycle genes, double-stranded oligodeoxynucleotides as "decoys" to trap the transcription factor E2F, and expression of a transgene encoding the constitutive endothelial cell form of nitric oxide synthase. Similar strategies are also effective for the genetic engineering of vein grafts and for the treatment of a mouse model of immune-mediated glomerular disease.
Resumo:
We have compared the tumorigenicity of two src oncogenes, v-src and c-src(527), whose respective protein products pp60v-src and pp60c-src(527) show a different spectrum of amino acid substitutions vis-à-vis the c-src protooncogene-encoded product pp60c-src. Whereas the extent of primary tumor growth induced by c-src(527) was quite similar in the two chicken lines tested, the extent of v-src-induced tumor growth showed a marked line dependence. As examined with a line of chickens that shows immune-mediated regression of v-src-induced tumors, a weaker tumor immunity, as correlated with a greater level of primary tumor growth, resulted from inoculation of c-src(527) DNA than of v-src DNA. These observations indicated that the v-src-specific amino acid substitutions define a major tumor antigenicity. That a separate src-associated antigenicity is also targetable by the tumor immune response followed from the finding that the level of protective immunity against the growth of c-src(527) DNA-induced tumors was augmented under conditions of the prior regression of v-src DNA-induced tumors. As this latter antigenicity may include one or more c-src(527)-encoded peptides that are equivalent to c-src-encoded self peptides, these observations suggest that a host tolerance to pp60c-src can be broken so as to permit a tumor immune response based on recognition of self peptides of pp60c-src(527).
Resumo:
Activated components of the complement system are potent mediators of inflammation that may play an important role in numerous disease states. For example, they have been implicated in the pathogenesis of inflammatory joint diseases including rheumatoid arthritis (RA). To target complement activation in immune-mediated joint inflammation, we have utilized monoclonal antibodies (mAbs) that inhibit the complement cascade at C5, blocking the generation of the major chemotactic and proinflammatory factors C5a and C5b-9. In this study, we demonstrate the efficacy of a mAb specific for murine C5 in the treatment of collagen-induced arthritis, an animal model for RA. We show that systemic administration of the anti-C5 mAb effectively inhibits terminal complement activation in vivo and prevents the onset of arthritis in immunized animals. Most important, anti-C5 mAb treatment is also highly effective in ameliorating established disease. These results demonstrate a critical role for activated terminal complement components not only in the induction but also in the progression of collagen-induced arthritis and suggest that C5 may be an attractive therapeutic target in RA.
Resumo:
Monkeys with excellent reproductive histories were immunized with the laminin peptides YIGSR, RGD, IKVAV, and YD, a control sequence with no known biological function. Sera from the YIGSR-immunized monkey became toxic, causing neural tube defects in whole rat embryo cultures, and this monkey experienced fetal loss after immunization. Sera from the RGD-immunized monkey also became embryotoxic in culture after immunization, but this monkey appeared to become infertile as she failed to initiate a pregnancy for at least 2 years after immunization. In contrast, embryos cultured on sera from the IKVAV- or YD-immunized monkeys were predominantly normal and both monkeys completed successful pregnancies. Antibody levels to the respective peptides or to laminin were not predictive of embryotoxicity, but antibody binding to homogenized yolk sacs as well as to yolk sacs of cultured embryos was associated with sera embryotoxicity and reproductive outcomes in vivo. These observations suggested that the laminin sequences YIGSR and RGD may play a role in immune-mediated reproductive failure by reacting directly with embryonic tissue and could provide a basis for identifying individuals at risk for both spontaneous abortion and infertility.
Resumo:
The Fas/Fas ligand (FasL) system participates in regulation of the immune system through the apoptotic process. However, the extent to which abnormalities in this system are involved in the loss of self-tolerance and development of autoimmune disease not associated with Fas/FasL mutations remains unknown. The present study addresses this issue in Fas/FasL-intact, systemic lupus erythematosus (SLE)-prone (NZB × NZW) (NZB/W) F1 mice. While splenic B cells from 2-month-old mice before overt SLE expressed Fas poorly, in vitro stimulation with an agonistic anti-CD40 mAb up-regulated their Fas expression, thus revealing the existence of two populations: one was Fashigh and highly susceptible to anti-Fas mAb-induced apoptosis, and the other was Faslow and apoptosis-resistant. The Faslow cells were included in the CD5+ B cell subpopulation and contained most of the cells that produced IgM anti-DNA antibodies. The isotype of anti-DNA antibodies switches from IgM to IgG in NZB/W F1 mice at ages beginning at about 6 months. These IgG anti-DNA antibodies were produced almost exclusively by a subpopulation of splenic B cells that spontaneously expressed low levels of Fas in vivo and were apoptosis-resistant. The findings indicate that precursor B cells for autoantibody production and presumably autoantibody-secreting cells in these mice are relatively resistant to Fas-mediated apoptosis, a finding supporting the concept that abnormalities of Fas-mediated apoptotic process are involved in the development of autoreactive B cells in Fas/FasL-intact autoimmune disease.
Resumo:
“Natural” Igs, mainly IgM, comprise part of the innate immune system present in healthy individuals, including antigen-free mice. These Igs are thought to delay pathogenicity of infecting agents until antigen-induced high affinity Igs of all isotypes are produced. Previous studies suggested that the acquired humoral response arises directly from the innate response, i.e., that B cells expressing natural IgM, upon antigen encounter, differentiate to give rise both to cells that secrete high amounts of IgM and to cells that undergo affinity maturation and isotype switching. However, by using a murine model of influenza virus infection, we demonstrate here that the B cells that produce natural antiviral IgM neither increase their IgM production nor undergo isotype switching to IgG2a in response to the infection. These cells are distinct from the B cells that produce the antiviral response after encounter with the pathogen. Our data therefore demonstrate that the innate and the acquired humoral immunities to influenza virus are separate effector arms of the immune system and that antigen exposure per se is not sufficient to increase natural antibody production.
Resumo:
Successful neonatal immunization of humans has proven difficult. We have evaluated CpG-containing oligonucleotides as an adjuvant for immunization of young mice (1–14 days old) against hepatitis B virus surface antigen. The protein-alum-CpG formulation, like the DNA vaccine, produced seroconversion of the majority of mice immunized at 3 or 7 days of age, compared with 0–10% with the protein-alum or protein-CpG formulations. All animals, from neonates to adults, immunized with the protein-alum vaccine exhibited strong T helper (Th)2-like responses [predominantly IgG1, weak or absent cytotoxic T lymphocytes (CTL)]. Th2-type responses also were induced in young mice with protein-CpG (in 1-, 3-, and 7-day-old mice) and protein-alum-CpG (in 1- and 3-day-old mice) but immunization carried out at older ages gave mixed Th1/Th2 (Th0) responses. DNA vaccines gave Th0-like responses when administered at 1 and 7 days of age and Th1-like (predominantly IgG2a and CTL) responses with 14-day-old or adult mice. Surprisingly, the protein-alum-CpG formulation was better than the DNA vaccine for percentage of seroconversion, speed of appearance, and peak titer of the antibody response, as well as prevalence and strength of CTL. These findings may have important implications for immunization of human infants.
Resumo:
The p40 subunit of interleukin 12 (IL-12p40) has been known to act as an IL-12 antagonist in vitro. We here describe the immunosuppressive effect of IL-12p40 in vivo. A murine myoblast cell line, C2C12, was transduced with retro-virus vectors carrying the lacZ gene as a marker and the IL-12p40 gene. IL-12p40 secreted from the transfectant inhibited the IL-12-induced interferon gamma (IFN-gamma) production by splenocytes in vitro. Survival of C2C12 transplanted into allogeneic recipients was substantially prolonged when transduced with IL-12p40. Cytokine (IL-2 and IFN-gamma) production and cytotoxic T lymphocyte induction against allogeneic C2C12 were impaired in the recipients transplanted with the IL-12p40 transfectant. Delayed-type hypersensitivity response against C2C12 was also diminished in the IL-12p40 recipients. Furthermore, serum antibodies against beta-galactosidase of the T-helper 1-dependent isotypes (IgG2 and IgG3) were decreased in the IL-12p40 recipients. These results indicate that locally produced IL-12p40 exerts a potent immunosuppressive effect on T-helper 1-mediated immune responses that lead to allograft rejection. Therefore, IL-12p40 gene transduction would be useful for preventing the rejection of allografts and genetically modified own cells that are transduced with potentially antigenic molecules in gene therapy.
Resumo:
The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP12 agarose beads. Insulin affected neither the amount of mTOR immunoprecipitated nor the amount of mTOR detected by immunoblotting with mTAb2. However, the hormone markedly decreased the reactivity of mTOR with mTAb1, an antibody that activates the mTOR protein kinase. The effects of insulin on increasing mTOR protein kinase activity and on decreasing mTAb1 reactivity were abolished by incubating mTOR with protein phosphatase 1. Interestingly, the epitope for mTAb1 is located near the COOH terminus of mTOR in a 20-amino acid region that includes consensus sites for phosphorylation by protein kinase B (PKB). Experiments were performed in MER-Akt cells to investigate the role of PKB in controlling mTOR. These cells express a PKB-mutant estrogen receptor fusion protein that is activated when the cells are exposed to 4-hydroxytamoxifen. Activating PKB with 4-hydroxytamoxifen mimicked insulin by decreasing mTOR reactivity with mTAb1 and by increasing the PHAS-I kinase activity of mTOR. Our findings support the conclusion that insulin activates mTOR by promoting phosphorylation of the protein via a signaling pathway that contains PKB.