31 resultados para Hot spots, levels of delinquency, citizen’s security, critical areas, Bogotá.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organization of transgenes in rice transformed through direct DNA transfer strongly suggests a two-phase integration mechanism. In the “preintegration” phase, transforming plasmid molecules (either intact or partial) are spliced together. This gives rise to rearranged transgenic sequences, which upon integration do not contain any interspersed plant genomic sequences. Subsequently, integration of transgenic DNA into the host genome is initiated. Our experiments suggest that the original site of integration acts as a hot spot, facilitating subsequent integration of successive transgenic molecules at the same locus. The resulting transgenic locus may have plant DNA separating the transgenic sequences. Our data indicate that transformation through direct DNA transfer, specifically particle bombardment, generally results in a single transgenic locus as a result of this two-phase integration mechanism. Transgenic plants generated through such processes may, therefore, be more amenable to breeding programs as the single transgenic locus will be easier to characterize genetically. Results from direct DNA transfer experiments suggest that in the absence of protein factors involved in exogenous DNA transfer through Agrobacterium, the qualitative and/or quantitative efficiency of transformation events is not compromised. Our results cast doubt on the role of Agrobacterium vir genes in the integration process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinically important mutant p53 proteins may be tumorigenic through a dominant-negative mechanism or due to a gain-of-function. Examples for both hypotheses have been described; however, it remains unclear to what extent they apply to TP53 mutations in general. Here it is shown that the mutational spectrum of dominant-negative p53 mutants selected in a novel yeast assay correlates tightly with p53 mutations in cancer. Two classes of dominant-negative mutations are described; the more dominant one affects codons that are essential for the stabilization of the DNA-binding surface of the p53 core domain and for the direct interaction of p53 with its DNA binding sites. These results predict that the vast majority of TP53 mutations leading to cancer do so in a dominant-negative fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent epidemiological studies indicate beneficial effects of moderate ethanol consumption in ischemic heart disease. Most studies, however, focus on the effect of long-term consumption of ethanol. In this study, we determined whether brief exposure to ethanol immediately before ischemia also produces cardioprotection. In addition, because protein kinase C (PKC) has been shown to mediate protection of the heart from ischemia, we determined the role of specific PKC isozymes in ethanol-induced protection. We demonstrated that (i) brief exposure of isolated adult rat cardiac myocytes to 10–50 mM ethanol protected against damage induced by prolonged ischemia; (ii) an isozyme-selective ɛPKC inhibitor developed in our laboratory inhibited the cardioprotective effect of acute ethanol exposure; (iii) protection of isolated intact adult rat heart also occurred after incubation with 10 mM ethanol 20 min before global ischemia; and (iv) ethanol-induced cardioprotection depended on PKC activation because it was blocked by chelerythrine and GF109203X, two PKC inhibitors. Consumption of 1–2 alcoholic beverages in humans leads to blood alcohol levels of ≈10 mM. Therefore, our work demonstrates that exposure to physiologically attainable ethanol levels minutes before ischemia provides cardioprotection that is mediated by direct activation of ɛPKC in the cardiac myocytes. The potential clinical implications of our findings are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal plasticity plays a very important role in brain adaptations to environmental stimuli, disease, and aging processes. The kainic acid model of temporal lobe epilepsy was used to study the long-term anatomical and biochemical changes in the hippocampus after seizures. Using Northern blot analysis, immunocytochemistry, and Western blot analysis, we have found a long-term elevation of the proconvulsive opioid peptide, enkephalin, in the rat hippocampus. We have also demonstrated that an activator protein-1 transcription factor, the 35-kDa fos-related antigen, can be induced and elevated for at least 1 year after kainate treatment. This study demonstrated that a single systemic injection of kainate produces almost permanent increases in the enkephalin and an activator protein-1 transcription factor, the 35-kDa fos-related antigen, in the rat hippocampus, and it is likely that these two events are closely associated with the molecular mechanisms of induction of long-lasting enhanced seizure susceptibility in the kainate-induced seizure model. The long-term expression of the proenkephalin mRNA and its peptides in the kainate-treated rat hippocampus also suggests an important role in the recurrent seizures of temporal lobe epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of cortical plasticity during adulthood has been demonstrated using many experimental paradigms. Whether this phenomenon is generated exclusively by changes in intrinsic cortical circuitry, or whether it involves concomitant cortical and subcortical reorganization, remains controversial. Here, we addressed this issue by simultaneously recording the extracellular activity of up to 135 neurons in the primary somatosensory cortex, ventral posterior medial nucleus of the thalamus, and trigeminal brainstem complex of adult rats, before and after a reversible sensory deactivation was produced by subcutaneous injections of lidocaine. Following the onset of the deactivation, immediate and simultaneous sensory reorganization was observed at all levels of the somatosensory system. No statistical difference was observed when the overall spatial extent of the cortical (9.1 ± 1.2 whiskers, mean ± SE) and the thalamic (6.1 ± 1.6 whiskers) reorganization was compared. Likewise, no significant difference was found in the percentage of cortical (71.1 ± 5.2%) and thalamic (66.4 ± 10.7%) neurons exhibiting unmasked sensory responses. Although unmasked cortical responses occurred at significantly higher latencies (19.6 ± 0.3 ms, mean ± SE) than thalamic responses (13.1 ± 0.6 ms), variations in neuronal latency induced by the sensory deafferentation occurred as often in the thalamus as in the cortex. These data clearly demonstrate that peripheral sensory deafferentation triggers a system-wide reorganization, and strongly suggest that the spatiotemporal attributes of cortical plasticity are paralleled by subcortical reorganization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cry proteins produced by Bacillus thuringiensis are selective biodegradable insecticides used increasingly in bacterial insecticides and transgenic plants as alternatives to synthetic chemical insecticides. However, the potential for development of resistance and cross-resistance in target insect populations to Cry proteins used alone or in combination threatens the more widespread use of this novel pest control technology. Here we show that high levels of resistance to CryIV proteins in larvae of the mosquito, Culex quinquefasciatus, can be suppressed or reduced markedly by combining these proteins with sublethal quantities of CytA, a cytolytic endotoxin of B. thuringiensis. Resistance at the LC95 level of 127-fold for a combination of three CryIV toxins (CryIVA, B, and D), resulting from 60 generations of continuous selection, was completely suppressed by combining sporulated powders of CytA in a 1:3 ratio with sporulated powders of a CryIVA, CryIVB, and CryIVD strain. Combining the CytA strain with a CryIVA and CryIVB strain also completely suppressed mosquito resistance of 217-fold to the latter toxins at the LC95 level, whereas combination of CytA with CryIVD reduced resistance in a CryIVD-selected mosquito strain from greater than 1,000-fold to less than 8-fold. The CytA/CryIV model provides a potential molecular genetic strategy for engineering resistance management for Cry proteins directly into bacterial insecticides and transgenic plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14α-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14α-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful gene therapy depends on stable transduction of hematopoietic stem cells. Target cells must cycle to allow integration of Moloney-based retroviral vectors, yet hematopoietic stem cells are quiescent. Cells can be held in quiescence by intracellular cyclin-dependent kinase inhibitors. The cyclin-dependent kinase inhibitor p15INK4B blocks association of cyclin-dependent kinase (CDK)4/cyclin D and p27kip-1 blocks activity of CDK2/cyclin A and CDK2/cyclin E, complexes that are mandatory for cell-cycle progression. Antibody neutralization of β transforming growth factor (TGFβ) in serum-free medium decreased levels of p15INK4B and increased colony formation and retroviral-mediated transduction of primary human CD34+ cells. Although TGFβ neutralization increased colony formation from more primitive, noncycling hematopoietic progenitors, no increase in M-phase-dependent, retroviral-mediated transduction was observed. Transduction of the primitive cells was augmented by culture in the presence of antisense oligonucleotides to p27kip-1 coupled with TGFβ-neutralizing antibodies. The transduced cells engrafted immune-deficient mice with no alteration in human hematopoietic lineage development. We conclude that neutralization of TGFβ, plus reduction in levels of the cyclin-dependent kinase inhibitor p27, allows transduction of primitive and quiescent hematopoietic progenitor populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a homodimeric member of the cystine knot family of growth factors, with limited sequence homology to platelet-derived growth factor (PDGF) and transforming growth factor β2 (TGF-β). We have determined its crystal structure at a resolution of 2.5 Å, and identified its kinase domain receptor (KDR) binding site using mutational analysis. Overall, the VEGF monomer resembles that of PDGF, but its N-terminal segment is helical rather than extended. The dimerization mode of VEGF is similar to that of PDGF and very different from that of TGF-β. Mutational analysis of VEGF reveals that symmetrical binding sites for KDR are located at each pole of the VEGF homodimer. Each site contains two functional “hot spots” composed of binding determinants presented across the subunit interface. The two most important determinants are located within the largest hot spot on a short, three-stranded sheet that is conserved in PDGF and TGF-β. Functional analysis of the binding epitopes for two receptor-blocking antibodies reveal different binding determinants near each of the KDR binding hot spots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lowe syndrome is an X-linked disorder that has a complex phenotype that includes progressive renal failure and blindness. The disease is caused by mutations in an inositol polyphosphate 5-phosphatase designated OCRL. It has been shown that the OCRL protein is found on the surface of lysosomes and that a renal tubular cell line deficient in OCRL accumulated substrate phosphatidylinositol 4,5-bisphosphate. Because this lipid is required for vesicle trafficking from lysosomes, we postulate that there is a defect in lysosomal enzyme trafficking in patients with Lowe syndrome that leads to increased extracellular lysosomal enzymes and might lead to tissue damage and contribute to the pathogenesis of the disease. We have measured seven lysosomal enzymes in the plasma of 15 patients with Lowe syndrome and 15 age-matched male controls. We find a 1.6- to 2.0-fold increase in all of the enzymes measured. When the data was analyzed by quintiles of activity for all of the enzymes, we found that 95% of values in the lowest quintile come from normal subjects whereas in the highest quintile 85% of the values are from patients with Lowe syndrome. The increased enzyme levels are not attributable to renal insufficiency because there was no difference in enzyme activity in the four patients with the highest creatinine levels compared with the six patients with the lowest creatinine values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin A is required for reproduction and normal embryonic development. We have determined that all-trans-retinoic acid (atRA) can support development of the mammalian embryo to parturition in vitamin A-deficient (VAD) rats. At embryonic day (E) 0.5, VAD dams were fed purified diets containing either 12 μg of atRA per g of diet (230 μg per rat per day) or 250 μg of atRA per g of diet (4.5 mg per rat per day) or were fed the purified diet supplemented with a source of retinol (100 units of retinyl palmitate per day). An additional group was fed both 250 μg of atRA per g of diet in combination with retinyl palmitate. Embryonic survival to E12.5 was similar for all groups. However, embryonic development in the group fed 12 μg of atRA per g of diet was grossly abnormal. The most notable defects were in the region of the hindbrain, which included a loss of posterior cranial nerves (IX, X, XI, and XII) and postotic pharyngeal arches as well as the presence of ectopic otic vesicles and a swollen anterior cardinal vein. All embryonic abnormalities at E12.5 were prevented by feeding pharmacological amounts of atRA (250 μg/g diet) or by supplementation with retinyl palmitate. Embryos from VAD dams receiving 12 μg of atRA per g of diet were resorbed by E18.5, whereas those in the group fed 250 μg of atRA per g of diet survived to parturition but died shortly thereafter. Equivalent results were obtained by using commercial grade atRA or atRA that had been purified to eliminate any potential contamination by neutral retinoids, such as retinol. Thus, 250 μg of atRA per g of diet fed to VAD dams (≈4.5 mg per rat per day) can prevent the death of embryos at midgestation and prevents the early embryonic abnormalities that arise when VAD dams are fed insufficient amounts of atRA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptides corresponding to the immunodominant loop located at residues 135–158 on capsid protein VP1 of foot-and-mouth disease virus (FMDV) generally elicit high levels of anti-peptide and virus-neutralizing antibodies. In some instances, however, the level of neutralizing antibodies is low or even negligible, even though the level of anti-peptide antibodies is high. We have shown previously that the antigenic activity of peptide 141–159 of VP1 of a variant of serotype A can be mimicked by a retro-inverso (all-d retro or retroenantio) peptide analogue. This retro-inverso analogue induced greater and longer-lasting antibody titers than did the corresponding l-peptide. We now show that a single inoculation of the retro-inverso analogue elicits high levels of neutralizing antibodies that persist longer than those induced against the corresponding l-peptide and confer substantial protection in guinea pigs challenged with the cognate virus. In view of the high stability to proteases of retro-inverso peptide analogues and their enhanced immunogenicity, these results have practical relevance in designing potential peptide vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian subventricular zone (SVZ) of the lateral wall of the forebrain ventricle retains a population of proliferating neuronal precursors throughout life. Neuronal precursors born in the postnatal and adult SVZ migrate to the olfactory bulb where they differentiate into interneurons. Here we tested the potential of mouse postnatal SVZ precursors in the environment of the embryonic brain: (i) a ubiquitous genetic marker, (ii) a neuron-specific transgene, and (iii) a lipophilic-dye were used to follow the fate of postnatal day 5–10 SVZ cells grafted into embryonic mouse brain ventricles at day 15 of gestation. Graft-derived cells were found at multiple levels of the neuraxis, including septum, thalamus, hypothalamus, and in large numbers in the midbrain inferior colliculus. We observed no integration into the cortex. Neuronal differentiation of graft derived cells was demonstrated by double-staining with neuron-specific β-tubulin antibodies, expression of the neuron-specific transgene, and the dendritic arbors revealed by the lipophilic dye. We conclude that postnatal SVZ cells can migrate through and differentiate into neurons within multiple embryonic brain regions other than the olfactory bulb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submillimolar levels of calcium, similar to the physiological total (bound + free) intranuclear concentration (0.01–1 mM), induced a conformational change within d(TG/AC)n, one of the frequent dinucleotide repeats of the mammalian genome. This change is calcium-specific, because no other tested cation induced it and it was detected as a concentration-dependent transition from B- to a non-B-DNA conformation expanding from 3′ end toward the 5′ of the repeat. Genomic footprinting of various rat brain regions revealed the existence of similar non-B-DNA conformation within a d(TG/AC)28 repeat of the endogenous enkephalin gene only in enkephalin-expressing caudate nucleus and not in the nonexpressing thalamus. Binding assays demonstrated that DNA could bind calcium and can compete with calmodulin for calcium.