22 resultados para E2 protein -
Resumo:
Agrobacterium tumefaciens transfers transferred DNA (T-DNA), a single-stranded segment of its tumor-inducing (Ti) plasmid, to the plant cell nucleus. The Ti-plasmid-encoded virulence E2 (VirE2) protein expressed in the bacterium has single-stranded DNA (ssDNA)-binding properties and has been reported to act in the plant cell. This protein is thought to exert its influence on transfer efficiency by coating and accompanying the single-stranded T-DNA (ss-T-DNA) to the plant cell genome. Here, we analyze different putative roles of the VirE2 protein in the plant cell. In the absence of VirE2 protein, mainly truncated versions of the T-DNA are integrated. We infer that VirE2 protects the ss-T-DNA against nucleolytic attack during the transfer process and that it is interacting with the ss-T-DNA on its way to the plant cell nucleus. Furthermore, the VirE2 protein was found not to be involved in directing the ss-T-DNA to the plant cell nucleus in a manner dependent on a nuclear localization signal, a function which is carried by the NLS of VirD2. In addition, the efficiency of T-DNA integration into the plant genome was found to be VirE2 independent. We conclude that the VirE2 protein of A. tumefaciens is required to preserve the integrity of the T-DNA but does not contribute to the efficiency of the integration step per se.
Resumo:
The identification of the neutralization domains of hepatitis C virus (HCV) is essential for the development of an effective vaccine. Here, we show that the hypervariable region 1 (HVR1) of the envelope 2 (E2) protein is a critical neutralization domain of HCV. Neutralization of HCV in vitro was attempted with a rabbit hyperimmune serum raised against a homologous synthetic peptide derived from the HVR1 of the E2 protein, and the residual infectivity was evaluated by inoculation of HCV-seronegative chimpanzees. The source of HCV was plasma obtained from a patient (H) during the acute phase of posttransfusion non-A, non-B hepatitis, which had been titered for infectivity in chimpanzees. The anti-HVR1 antiserum induced protection against homologous HCV infection in chimpanzees, but not against the emergence of neutralization escape mutants that were found to be already present in the complex viral quasispecies of the inoculum. The finding that HVR1 can elicit protective immunity opens new perspectives for the development of effective preventive strategies. However, the identification of the most variable region of HCV as a critical neutralization domain poses a major challenge for the development of a broadly reactive vaccine against HCV.
Resumo:
High-level globin expression in erythroid precursor cells depends on the integrity of NF-E2 recognition sites, transcription factor AP-1-like protein-binding motifs, located in the upstream regulatory regions of the alpha- and beta-globin loci. The NF-E2 transcription factor, which recognizes these sites, is a heterodimer consisting of (i) p45 NF-E2 (the larger subunit), a hematopoietic-restricted basic leucine zipper protein, and (ii) a widely expressed basic leucine zipper factor, p18 NF-E2, the smaller subunit. p18 NF-E2 protein shares extensive homology with the maf protooncogene family. To determine an in vivo role for p18 NF-E2 protein we disrupted the p18 NF-E2-encoding gene by homologous recombination in murine embryonic stem cells and generated p18 NF-E2-/- mice. These mice are indistinguishable from littermates throughout all phases of development and remain healthy in adulthood. Despite the absence of expressed p18 NF-E2, DNA-binding activity with the properties of the NF-E2 heterodimer is present in fetal liver erythroid cells of p18 NF-E2-/- mice. We speculate that another member of the maf basic leucine zipper family substitutes for the p18 subunit in a complex with p45 NF-E2. Thus, p18 NF-E2 per se appears to be dispensable in vivo.
Resumo:
Eukaryotic viruses can maintain latency in dividing cells as extrachromosomal nuclear plasmids. Segregation and nuclear retention of DNA is, therefore, a key issue in retaining copy number. The E2 enhancer protein of the papillomaviruses is required for viral DNA replication and transcription. Viral mutants that prevent phosphorylation of the bovine papillomavirus type 1 (BPV) E2 protein are transformation-defective, despite normal viral gene expression and replication function. Cell colonies harboring such mutants show sectoring of viral DNA and are unable to maintain the episome. We find that transforming viral DNA attaches to mitotic chromosomes, in contrast to the mutant genome encoding the E2 phosphorylation mutant. Second-site suppressor mutations were uncovered in both E1 and E2 genes that allow for transformation, maintenance, and chromosomal attachment. E2 protein was also found to colocalize to mitotic chromosomes, whereas the mutant did not, suggesting a direct role for E2 in viral attachment to chromosomes. Such viral hitch-hiking onto cellular chromosomes is likely to provide a general mechanism for maintaining nuclear plasmids.
Resumo:
To gain insight into the structural basis of DNA bending by adenine–thymine tracts (A-tracts) and their role in DNA recognition by gene-regulatory proteins, we have determined the crystal structure of the high-affinity DNA target of the cancer-associated human papillomavirus E2 protein. The three independent B-DNA molecules of the crystal structure determined at 2.2-Å resolution are examples of A-tract-containing helices where the global direction and magnitude of curvature are in accord with solution data, thereby providing insights, at the base pair level, into the mechanism of DNA bending by such sequence motifs. A comparative analysis of E2–DNA conformations with respect to other structural and biochemical studies demonstrates that (i) the A-tract structure of the core region, which is not contacted by the protein, is critical for the formation of the high-affinity sequence-specific protein–DNA complex, and (ii) differential binding affinity is regulated by the intrinsic structure and deformability encoded in the base sequence of the DNA target.
Resumo:
Hepatitis C virus (HCV) is a major cause of chronic hepatitis. The virus does not replicate efficiently in cell cultures, and it is therefore difficult to assess infection-neutralizing antibodies and to evaluate protective immunity in vitro. To study the binding of the HCV envelope to cell-surface receptors, we developed an assay to assess specific binding of recombinant envelope proteins to human cells and neutralization thereof. HCV recombinant envelope proteins expressed in various systems were incubated with human cells, and binding was assessed by flow cytometry using anti-envelope antibodies. Envelope glycoprotein 2 (E2) expressed in mammalian cells, but not in yeast or insect cells, binds human cells with high affinity (Kd approximately 10(-8) M). We then assessed antibodies able to neutralize E2 binding in the sera of both vaccinated and carrier chimpanzees, as well as in the sera of humans infected with various HCV genotypes. Vaccination with recombinant envelope proteins expressed in mammalian cells elicited high titers of neutralizing antibodies that correlated with protection from HCV challenge. HCV infection does not elicit neutralizing antibodies in most chimpanzees and humans, although low titers of neutralizing antibodies were detectable in a minority of infections. The ability to neutralize binding of E2 derived from the HCV-1 genotype was equally distributed among sera from patients infected with HCV genotypes 1, 2, and 3, demonstrating that binding of E2 is partly independent of E2 hypervariable regions. However, a mouse monoclonal antibody raised against the E2 hypervariable region 1 can partially neutralize binding of E2, indicating that at least two neutralizing epitopes, one of which is hypervariable, should exist on the E2 protein. The neutralization-of-binding assay described will be useful to study protective immunity to HCV infection and for vaccine development.
Resumo:
We have used the interaction between the erythroid-specific enhancer in hypersensitivity site 2 of the human β-globin locus control region and the globin gene promoters as a paradigm to examine the mechanisms governing promoter/enhancer interactions in this locus. We have demonstrated that enhancer-dependent activation of the globin promoters is dependent on the presence of both a TATA box in the proximal promoter and the binding site for the erythroid-specific heteromeric transcription factor NF-E2 in the enhancer. Mutational analysis of the transcriptionally active component of NF-E2, p45NF-E2, localizes the critical region for this function to a proline-rich transcriptional activation domain in the NH2-terminal 80 amino acids of the protein. In contrast to the wild-type protein, expression of p45 NF-E2 lacking this activation domain in an NF-E2 null cell line fails to support enhancer-dependent transcription in transient assays. More significantly, the mutated protein also fails to reactivate expression of the endogenous β- or α-globin loci in this cell line. Protein-protein interaction studies reveal that this domain of p45 NF-E2 binds specifically to a component of the transcription initiation complex, TATA binding protein associated factor TAFII130. These findings suggest one potential mechanism for direct recruitment of distal regulatory regions of the globin loci to the individual promoters.
Resumo:
Parkinson's disease is a common neurodegenerative disorder in which familial-linked genes have provided novel insights into the pathogenesis of this disorder. Mutations in Parkin, a ring-finger-containing protein of unknown function, are implicated in the pathogenesis of autosomal recessive familial Parkinson's disease. Here, we show that Parkin binds to the E2 ubiquitin-conjugating human enzyme 8 (UbcH8) through its C-terminal ring-finger. Parkin has ubiquitin–protein ligase activity in the presence of UbcH8. Parkin also ubiquitinates itself and promotes its own degradation. We also identify and show that the synaptic vesicle-associated protein, CDCrel-1, interacts with Parkin through its ring-finger domains. Furthermore, Parkin ubiquitinates and promotes the degradation of CDCrel-1. Familial-linked mutations disrupt the ubiquitin–protein ligase function of Parkin and impair Parkin and CDCrel-1 degradation. These results suggest that Parkin functions as an E3 ubiquitin–protein ligase through its ring domains and that it may control protein levels via ubiquitination. The loss of Parkin's ubiquitin–protein ligase function in familial-linked mutations suggests that this may be the cause of familial autosomal recessive Parkinson's disease.
Resumo:
The infected cell protein 0 (ICP0) of herpes simplex virus 1, a promiscuous transactivator shown to enhance the expression of genes introduced into cells by infection or transfection, interacts with numerous cellular proteins and has been linked to the disruption of ND10 and degradation of several proteins. ICP0 contains a RING finger domain characteristic of a class of E3 ubiquitin ligases. We report that: (i) in infected cells, ICP0 interacts dynamically with proteasomes and is bound to proteasomes in the presence of the proteasome inhibitor MG132. Also in infected cells, cdc34, a polyubiquitinated E2 ubiquitin-conjugating enzyme, exhibits increased ICP0-dependent dynamic interaction with proteasomes. (ii) In an in vitro substrate-independent ubiquitination system, the RING finger domain encoded by exon 2 of ICP0 binds cdc34, whereas the carboxyl-terminal domain of ICP0 functions as an E3 ligase independent of the RING finger domain. The results indicate that ICP0 can act as a unimolecular E3 ubiquitin ligase and that it promotes ubiquitin-protein ligation and binds the E2 cdc34. It differs from other unimolecular E3 ligases in that the domain containing the RING finger binds E2, whereas the ligase activity maps to a different domain of the protein. The results also suggest that ICP0 shuttles between nucleus and cytoplasm as a function of its dynamic interactions with proteasomes.
Resumo:
Ubiquitin-dependent proteolysis of the mitotic cyclins A and B is required for the completion of mitosis and entry into the next cell cycle. This process is catalyzed by the cyclosome, an approximately 22S particle that contains a cyclin-selective ubiquitin ligase activity, E3-C, that requires a cyclin-selective ubiquitin carrier protein (UBC) E2-C. Here we report the purification and cloning of E2-C from clam oocytes. The deduced amino acid sequence of E2-C indicates that it is a new UBC family member. Bacterially expressed recombinant E2-C is active in in vitro cyclin ubiquitination assays, where it exhibits the same substrate specificities seen with native E2-C. These results demonstrate that E2-C is not a homolog of UBC4 or UBC9, proteins previously suggested to be involved in cyclin ubiquitination, but is a new UBC family member with unique properties.
Resumo:
Posttranslational modifications such as ubiquitination and phosphorylation play an important role in the regulation of cellular protein function. Homeodomain-interacting protein kinase 2 (HIPK2) is a member of the recently identified family of nuclear protein kinases that act as corepressors for homeodomain transcription factors. Here, we show that HIPK2 is regulated by a ubiquitin-like protein, SUMO-1. We demonstrate that HIPK2 localizes to nuclear speckles (dots) by means of a speckle-retention signal. This speckle-retention signal contains a domain that interacts with a mouse ubiquitin-like protein conjugating (E2) enzyme, mUBC9. In cultured cells, HIPK2 is covalently modified by SUMO-1, and the SUMO-1 modification of HIPK2 correlates with its localization to nuclear speckles (dots). Thus, our results provide firm evidence that the nuclear protein kinase HIPK2 can be covalently modified by SUMO-1, which directs its localization to nuclear speckles (dots).
Resumo:
Transcriptional regulation in papillomaviruses depends on sequence-specific binding of the regulatory protein E2 to several sites in the viral genome. Crystal structures of bovine papillomavirus E2 DNA targets reveal a conformational variant of B-DNA characterized by a roll-induced writhe and helical repeat of 10.5 bp per turn. A comparison between the free and the protein-bound DNA demonstrates that the intrinsic structure of the DNA regions contacted directly by the protein and the deformability of the DNA region that is not contacted by the protein are critical for sequence-specific protein/DNA recognition and hence for gene-regulatory signals in the viral system. We show that the selection of dinucleotide or longer segments with appropriate conformational characteristics, when positioned at correct intervals along the DNA helix, can constitute a structural code for DNA recognition by regulatory proteins. This structural code facilitates the formation of a complementary protein–DNA interface that can be further specified by hydrogen bonds and nonpolar interactions between the protein amino acids and the DNA bases.
Resumo:
Prostaglandin E2 receptors (EP) were detected by radioligand binding in nuclear fractions isolated from porcine brain and myometrium. Intracellular localization by immunocytofluorescence revealed perinuclear localization of EPs in porcine cerebral microvascular endothelial cells. Nuclear association of EP1 was also found in fibroblast Swiss 3T3 cells stably overexpressing EP1 and in human embryonic kidney 293 (Epstein–Barr virus-encoded nuclear antigen) cells expressing EP1 fused to green fluorescent protein. High-resolution immunostaining of EP1 revealed their presence in the nuclear envelope of isolated (cultured) endothelial cells and in situ in brain (cortex) endothelial cells and neurons. Stimulation of these nuclear receptors modulate nuclear calcium and gene transcription.
Resumo:
In skeletal muscle, transcription of the gene encoding the mouse type Iα (RIα) subunit of the cAMP-dependent protein kinase is initiated from the alternative noncoding first exons 1a and 1b. Here, we report that activity of the promoter upstream of exon 1a (Pa) depends on two adjacent E boxes (E1 and E2) in NIH 3T3-transfected fibroblasts as well as in intact muscle. Both basal activity and MyoD transactivation of the Pa promoter require binding of the upstream stimulating factors (USF) to E1. E2 binds either an unknown protein in a USF/E1 complex-dependent manner or MyoD. Both E2-bound proteins seem to function as repressors, but with different strengths, of the USF transactivation potential. Previous work has shown localization of the RIα protein at the neuromuscular junction. Using DNA injection into muscle of plasmids encoding segments of RIα or RIIα fused to green fluorescent protein, we demonstrate that anchoring at the neuromuscular junction is specific to RIα subunits and requires the amino-terminal residues 1–81. Mutagenesis of Phe-54 to Ala in the full-length RIα–green fluorescent protein template abolishes localization, indicating that dimerization of RIα is essential for anchoring. Moreover, two other hydrophobic residues, Val-22 and Ile-27, are crucial for localization of RIα at the neuromuscular junction. These amino acids are involved in the interaction of the Caenorhabditis elegans type Iα homologue RCE with AKAPCE and for in vitro binding of RIα to dual A-kinase anchoring protein 1. We also show enrichment of dual A-kinase anchoring protein 1 at the neuromuscular junction, suggesting that it could be responsible for RIα tethering at this site.
Resumo:
Cyclooxygenase-2 (COX-2) is an inducible form of COX and is overexpressed in diverse tumors, raising the possibility of a role for COX-2 in carcinogenesis. In addition, COX-2 contributes to angiogenesis. The Epstein–Barr virus (EBV) oncoprotein, latent membrane protein 1 (LMP1), is detected in at least 70% of nasopharyngeal carcinoma (NPC) and all EBV-infected preinvasive nasopharyngeal lesions. We found that in specimens of LMP1-positive NPC, COX-2 is frequently expressed, whereas LMP1-negative NPC rarely express the enzyme. We next found that expression of LMP1 in EBV-negative nasopharyngeal epithelial cells induced COX-2 expression. Coexpression of IκBα(S32A/S36A), which is not phosphorylated and prevents NF-κB activation, with LMP1 showed that NF-κB is essential for induction of COX-2 by LMP1. We also demonstrate that NF-κB is involved in LMP1-induced cox-2 promoter activity with the use of reporter assays. Two major regions of LMP1, designated CTAR1 and CTAR2, are signal-transducing domains of LMP1. Constructs expressing either CTAR1 or CTAR2 induce COX-2 but to a lesser extent than wild-type LMP1, consistent with the ability of both regions to activate NF-κB. Furthermore, we demonstrate that LMP1-induced COX-2 is functional because LMP1 increased production of prostaglandin E2 in a COX-2-dependent manner. Finally, we demonstrate that LMP1 increased production of vascular endothelial growth factor (VEGF). Treatment of LMP1-expressing cells with the COX-2-specific inhibitor (NS-398) dramatically decreased production of VEGF, suggesting that LMP1-induced VEGF production is mediated, at least in part, by COX-2. These results suggest that COX-2 induction by LMP1 may play a role in angiogenesis in NPC.