45 resultados para Dissection
Resumo:
In this work, we extend the study of the genes controlling the formation of domes in the rat mammary cell line LA7 under the influence of DMSO. The role of the rat8 gene has already been demonstrated. We have now studied two additional genes. The first, called 133, is the rat ortholog of the human epithelial membrane protein 3 (EMP3), a member of the peripheral myelin protein 22 (PMP22)/EMP/lens-specific membrane protein 20 (MP20) gene family that encodes for tetratransmembrane proteins; it is expressed in the LA7 line in the absence of DMSO but not in its presence. The second gene is the β subunit of the amiloride-sensitive Na+ channel. Studies with antisense oligonucleotides show that the formation of domes is under the control of all three genes: the expression of rat8 is required for both their formation and their persistence; the expression of the Na+ channel β subunit is required for their formation; and the expression of gene 133 blocks the expression of the Na+ channel genes, thus preventing formation of the domes. The formation of these structures is also accompanied by the expression of α6β1 integrin, followed by that of E-cadherin and cytokeratin 8. It appears, therefore, that dome formation requires the activity of the Na+ channel and the rat8-encoded protein and is under the negative control of gene 133. DMSO induces dome formation by blocking this control.
Resumo:
Mutations in the hook gene alter intracellular trafficking of internalized ligands in Drosophila. To dissect this defect in more detail, we developed a new approach to visualize the pathway taken by the Bride of Sevenless (Boss) ligand after its internalization into R7 cells. A chimeric protein consisting of HRP fused to Boss (HRP-Boss) was expressed in R8 cells. This chimera was fully functional: it rescued the boss mutant phenotype, and its trafficking was indistinguishable from that of the wild-type Boss protein. The HRP activity of the chimera was used to follow HRP-Boss trafficking on the ultrastructural level through early and late endosomes in R7 cells. In both wild-type and hook mutant eye disks, HRP-Boss was internalized into R7 cells. In wild-type tissue, Boss accumulated in mature multivesicular bodies (MVBs) within R7 cells; such accumulation was not observed in hook eye disks, however. Quantitative electron microscopy revealed a loss of mature MVBs in hook mutant tissue compared with wild type, whereas more than twice as many multilammelar late endosomes were detected. Our genetic analysis indicates that Hook is required late in endocytic trafficking to negatively regulate delivery from mature MVBs to multilammelar late endosomes and lysosomes.
Resumo:
The membrane assembly of polytopic membrane proteins is a complicated process. Using Chinese hamster P-glycoprotein (Pgp) as a model protein, we investigated this process previously and found that Pgp expresses more than one topology. One of the variations occurs at the transmembrane (TM) domain including TM3 and TM4: TM4 inserts into membranes in an Nin-Cout rather than the predicted Nout-Cin orientation, and TM3 is in cytoplasm rather than the predicted Nin-Cout orientation in the membrane. It is possible that TM4 has a strong activity to initiate the Nin-Cout membrane insertion, leaving TM3 out of the membrane. Here, we tested this hypothesis by expressing TM3 and TM4 in isolated conditions. Our results show that TM3 of Pgp does not have de novo Nin-Cout membrane insertion activity whereas TM4 initiates the Nin-Cout membrane insertion regardless of the presence of TM3. In contrast, TM3 and TM4 of another polytopic membrane protein, cystic fibrosis transmembrane conductance regulator (CFTR), have a similar level of de novo Nin-Cout membrane insertion activity and TM4 of CFTR functions only as a stop-transfer sequence in the presence of TM3. Based on these findings, we propose that 1) the membrane insertion of TM3 and TM4 of Pgp does not follow the sequential model, which predicts that TM3 initiates Nin-Cout membrane insertion whereas TM4 stops the insertion event; and 2) “leaving one TM segment out of the membrane” may be an important folding mechanism for polytopic membrane proteins, and it is regulated by the Nin-Cout membrane insertion activities of the TM segments.
Resumo:
We describe the isolation of fission yeast homologues of tubulin-folding cofactors B (Alp11) and E (Alp21), which are essential for cell viability and the maintenance of microtubules. Alp11B contains the glycine-rich motif (the CLIP-170 domain) involved in microtubular functions, whereas, unlike mammalian cofactor E, Alp21E does not. Both mammalian and yeast cofactor E, however, do contain leucine-rich repeats. Immunoprecipitation analysis shows that Alp11B interacts with both α-tubulin and Alp21E, but not with the cofactor D homologue Alp1, whereas Alp21E also interacts with Alp1D. The cellular amount of α-tubulin is decreased in both alp1 and alp11 mutants. Overproduction of Alp11B results in cell lethality and the disappearance of microtubules, which is rescued by co-overproduction of α-tubulin. Both full-length Alp11B and the C-terminal third containing the CLIP-170 domain localize in the cytoplasm, and this domain is required for efficient binding to α-tubulin. Deletion of alp11 is suppressed by multicopy plasmids containing either alp21+ or alp1+, whereas alp21 deletion is rescued by overexpression of alp1+ but not alp11+. Finally, the alp1 mutant is not complemented by either alp11+ or alp21+. The results suggest that cofactors operate in a linear pathway (Alp11B-Alp21E-Alp1D), each with distinct roles.
Resumo:
Several distinct chromosomal segments were recently identified by cosegregation analysis of polymorphic markers with antibody responsiveness in an F2 cross between high (H) and low (L) antibody responder lines of Biozzi mice. The effect associated with the relevant markers has now been investigated in backcross populations (toward the L line) bred from H and L mice made coisogenic at the H-2 locus. The antibody titers, measured on days 5 and 14 of the primary response to sheep red blood cells, were considered to be two distinct quantitative phenotypes. The results of single or multilocus analyses demonstrated the significant involvement, at one or the two titration times, of Im gene(s) on four distinct chromosomes: 4, 8, 12, and 18. The regions on chromosomes 6 and 10 have a lesser but still suggestive effect. The contribution of each locus ranged from 3% to 13%, and together these loci accounted for about 40% of the phenotypic variance at each titration time. The data are compatible with an additive effect of the relevant loci and suggestive of some interaction effects. In a second backcross toward L line, the H line alleles of the putative Im genes on chromosomes 6, 8, and 12 were isolated from each other and their effects were still detected.
Resumo:
Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome.
Resumo:
Changes in intracellular calcium in pea root hairs responding to Rhizobium leguminosarum bv. viciae nodulation (Nod) factors were analyzed by using a microinjected calcium-sensitive fluorescent dye (dextran-linked Oregon Green). Within 1–2 min after Nod-factor addition, there was usually an increase in fluorescence, followed about 10 min later by spikes in fluorescence occurring at a rate of about one spike per minute. These spikes, corresponding to an increase in calcium of ≈200 nM, were localized around the nuclear region, and they were similar in terms of lag and period to those induced by Nod factors in alfalfa. Calcium responses were analyzed in nonnodulating pea mutants, representing seven loci that affect early stages of the symbiosis. Mutations affecting three loci (sym8, sym10, and sym19) abolished Nod-factor-induced calcium spiking, whereas a normal response was seen in peas carrying alleles of sym2A, sym7, sym9, and sym30. Chitin oligomers of four or five N-acetylglucosamine residues could also induce calcium spiking, although the response was qualitatively different from that induced by Nod factors; a rapid increase in intracellular calcium was not observed, the period between spikes was lower, and the response was not as sustained. The chitin-oligomer-induced calcium spiking did not occur in nodulation mutants (sym8, sym10, and sym19) that were defective for Nod-factor-induced spiking, suggesting that this response is related to nodulation signaling. From our data and previous observations on the lack of mycorrhizal infection in some of the sym mutants, we propose a model for the potential order of pea nodulation genes in nodulation and mycorrhizal signaling.
Resumo:
Keratins 14 and 5 are the structural hallmarks of the basal keratinocytes of the epidermis and outer root sheath (ORS) of the hair follicle. Their genes are controlled in a tissue-specific manner and thus serve as useful tools to elucidate the regulatory mechanisms involved in keratinocyte-specific transcription. Previously we identified several keratinocyte-specific DNase I hypersensitive sites (HSs) in the 5′ regulatory sequences of the K14 gene and showed that a 700-bp regulatory domain encompassing HSs II and III can confer epidermal and ORS-specific gene expression in transgenic mice in vivo. Although HS II harbored much of the transactivation activity in vitro, it was not sufficient to restrict expression to keratinocytes in vivo. We now explore the HS III regulatory element. Surprisingly, this element on its own confers gene expression to the keratinocytes of the inner root sheath (IRS) of the hair follicle, whereas a 275-bp DNA fragment containing both HSs II and III shifts the expression from the IRS to the basal keratinocytes and ORS in vivo. Electrophoretic mobility-shift assays and mutational studies of HSs III reveal a role for CACCC-box binding proteins, Sp1 family members, and other factors adding to the list of previously described factors that are involved in keratinocyte-specific gene expression. These studies highlight a cooperative interaction of the two HSs domains and strengthen the importance of combinatorial play of transcription factors that govern keratinocyte-specific gene regulation.
Resumo:
The extremely halophilic archaeon Halobacterium sp. NRC-1 can grow phototrophically by means of light-driven proton pumping by bacteriorhodopsin in the purple membrane. Here, we show by genetic analysis of the wild type, and insertion and double-frame shift mutants of Bat that this transcriptional regulator coordinates synthesis of a structural protein and a chromophore for purple membrane biogenesis in response to both light and oxygen. Analysis of the complete Halobacterium sp. NRC-1 genome sequence showed that the regulatory site, upstream activator sequence (UAS), the putative binding site for Bat upstream of the bacterio-opsin gene (bop), is also present upstream to the other Bat-regulated genes. The transcription regulator Bat contains a photoresponsive cGMP-binding (GAF) domain, and a bacterial AraC type helix–turn–helix DNA binding motif. We also provide evidence for involvement of the PAS/PAC domain of Bat in redox-sensing activity by genetic analysis of a purple membrane overproducer. Five additional Bat-like putative regulatory genes were found, which together are likely to be responsible for orchestrating the complex response of this archaeon to light and oxygen. Similarities of the bop-like UAS and transcription factors in diverse organisms, including a plant and a γ-proteobacterium, suggest an ancient origin for this regulon capable of coordinating light and oxygen responses in the three major branches of the evolutionary tree of life. Finally, sensitivity of four of five regulon genes to DNA supercoiling is demonstrated and correlated to presence of alternating purine–pyrimidine sequences (RY boxes) near the regulated promoters.
Resumo:
RNA-mediated, posttranscriptional gene silencing has been determined as the molecular mechanism underlying transgenic virus resistance in many plant virus-dicot host plant systems. In this paper we show that transgenic virus resistance in sugarcane (Saccharum spp. hybrid) is based on posttranscriptional gene silencing. The resistance is derived from an untranslatable form of the sorghum mosaic potyvirus strain SCH coat protein (CP) gene. Transgenic sugarcane plants challenged with sorghum mosaic potyvirus strain SCH had phenotypes that ranged from fully susceptible to completely resistant, and a recovery phenotype was also observed. Clones derived from the same transformation event or obtained after vegetative propagation could display different levels of virus resistance, suggesting the involvement of a quantitative component in the resistance response. Most resistant plants displayed low or undetectable steady-state CP transgene mRNA levels, although nuclear transcription rates were high. Increased DNA methylation was observed in the transcribed region of the CP transgenes in most of these plants. Collectively, these characteristics indicate that an RNA-mediated, homology-dependent mechanism is at the base of the virus resistance. This work extends posttranscriptional gene silencing and homology-dependent virus resistance, so far observed only in dicots, to an agronomically important, polyploid monocot.
Resumo:
We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range.
Resumo:
In this work we extended the study of genes controlling the formation of specific differentiation structures called “domes” formed by the rat mammary adenocarcinoma cell line LA7 under the influence of DMSO. We have reported previously that an interferon-inducible gene, rat-8, and the β-subunit of the epithelial sodium channel (ENaC) play a fundamental role in this process. Now, we used a proteomic approach to identify proteins differentially expressed either in DMSO-induced LA7 or in 106A10 cells. Two differentially expressed proteins were investigated. The first, tropomyosin-5b, strongly expressed in DMSO-induced LA7 cells, is needed for dome formation because its synthesis inhibition by the antisense RNA technology abolished domes. The second protein, maspin, strongly expressed in the uninduced 106A10 cell line, inhibits dome formation because 106A10 cells, transfected with rat8 cDNA (the function of which is required for the organization of these structures), acquired the ability to develop domes when cultured in presence of an antimaspin antibody. Dome formation in these cultures are accompanied by ENaC β-subunit expression in the absence of DMSO. Therefore, dome formation requires the expression of tropomyosin-5b, in addition to the ENaC β-subunit and the rat8 proteins, and is under the negative control of maspin.
Resumo:
The genetics of Alzheimer disease (AD) are complex and not completely understood. Mutations in the amyloid precursor protein gene (APP) can cause early-onset autosomal dominant AD. In vitro studies indicate that cells expressing mutant APPs overproduce pathogenic forms of the A beta peptide, the major component of AD amyloid. However, mutations in the APP gene are responsible for 5% or less of all early-onset familial AD. A locus on chromosome 14 is responsible for AD in other early-onset AD families and represents the most severe form of the disease in terms of age of onset and rate of decline. Attempts to identify the AD3 gene by positional cloning methods are underway. At least one additional early-onset AD locus remains to be located. In late-onset AD, the apolipoprotein E gene allele epsilon 4 is a risk factor for AD. This allele appears to act as a dose-dependent age-of-onset modifier. The epsilon 2 allele of this gene may be protective. Other late-onset susceptibility factors remain to be identified.
Resumo:
We have previously identified a locus on rat chromosome 10 as carrying a major hypertension gene, BP/SP-1. The 100:1 odds support interval for this gene extended over a 35-centimorgan (cM) region of the chromosome that included the angiotensin I-converting enzyme (ACE) locus as demonstrated in a cross between the stroke-prone spontaneously hypertensive rat (SHRSPHD) and the normotensive Wistar-Kyoto (WKY-0HD) rat. Here we report on the further characterization of BP/SP-1, using a congenic strain, WKY-1HD. WKY-1HD animals carry a 6-cM chromosomal fragment genotypically identical with SHRSPHD on chromosome 10, 26 cM away from the ACE locus. Higher blood pressures in the WKY-1HD strain compared with the WKY-0HD strain, as well as absence of linkage of the chromosome 10 region to blood pressure in an F2 (WKY-1HD x SHRSPHD) population suggested the existence of a quantitative trait locus, termed BP/SP-1a, that lies within the SHRSP-congenic region in WKY-1HD. Linkage analysis in the F2 (WKY-0HD x SHRSPHD) cross revealed that BP/SP-1a is linked to basal blood pressure, whereas a second locus on chromosome 10, termed BP/SP-1b, that maps closer to the ACE locus cosegregates predominantly with blood pressure after exposure to excess dietary NaCl. Thus, we hypothesize that the previously reported effect of BP/SP-1 represents a composite phenotype that can be dissected into at least two specific components on the basis of linkage data and congenic experimentation. One of the loci identified, BP/SP-1a, represents the most precisely mapped locus affecting blood pressure that has so far been characterized by random-marker genome screening.
Resumo:
TFIIF is unique among the general transcription factors because of its ability to control the activity of RNA polymerase II at both the initiation and elongation stages of transcription. Mammalian TFIIF, a heterodimer of approximately 30-kDa (RAP30) and approximately 70-kDa (RAP74) subunits, assists TFIIB in recruiting RNA polymerase II into the preinitiation complex and activates the overall rate of RNA chain elongation by suppressing transient pausing by polymerase at many sites on DNA templates. A major objective of efforts to understand how TFIIF regulates transcription has been to establish the relationship between its initiation and elongation activities. Here we establish this relationship by demonstrating that TFIIF transcriptional activities are mediated by separable functional domains. To accomplish this, we sought and identified distinct classes of RAP30 mutations that selectively block TFIIF activity in transcription initiation and elongation. We propose that (i) TFIIF initiation activity is mediated at least in part by RAP30 C-terminal sequences that include a cryptic DNA-binding domain similar to conserved region 4 of bacterial sigma factors and (ii) TFIIF elongation activity is mediated in part by RAP30 sequences located immediately upstream of the C terminus in a region proposed to bind RNA polymerase II and by additional sequences located in the RAP30 N terminus.