25 resultados para Cytological alterations
Resumo:
Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.
Resumo:
Tuberculosis is a chronic infectious disease that is transmitted by cough-propelled droplets that carry the etiologic bacterium, Mycobacterium tuberculosis. Although currently available drugs kill most isolates of M. tuberculosis, strains resistant to each of these have emerged, and multiply resistant strains are increasingly widespread. The growing problem of drug resistance combined with a global incidence of seven million new cases per year underscore the urgent need for new antituberculosis therapies. The recent publication of the complete sequence of the M. tuberculosis genome has made possible, for the first time, a comprehensive genomic approach to the biology of this organism and to the drug discovery process. We used a DNA microarray containing 97% of the ORFs predicted from this sequence to monitor changes in M. tuberculosis gene expression in response to the antituberculous drug isoniazid. Here we show that isoniazid induced several genes that encode proteins physiologically relevant to the drug’s mode of action, including an operonic cluster of five genes encoding type II fatty acid synthase enzymes and fbpC, which encodes trehalose dimycolyl transferase. Other genes, not apparently within directly affected biosynthetic pathways, also were induced. These genes, efpA, fadE23, fadE24, and ahpC, likely mediate processes that are linked to the toxic consequences of the drug. Insights gained from this approach may define new drug targets and suggest new methods for identifying compounds that inhibit those targets.
Resumo:
The DNA in eukaryotic chromosomes is organized into a series of loops that are permanently attached at their bases to the nuclear scaffold or matrix at sequences known as scaffold-attachment or matrix-attachment regions. At present, it is not clear what effect affixation to the nuclear matrix has on chromatin architecture in important regulatory regions such as origins of replication or the promoter regions of genes. In the present study, we have investigated cell-cycle-dependent changes in the chromatin structure of a well characterized replication initiation zone in the amplified dihydrofolate reductase domain of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Replication can initiate at any of multiple potential sites scattered throughout the 55-kilobase intergenic region in this domain, with two subregions (termed ori-β and ori-γ) being somewhat preferred. We show here that the chromatin in the ori-β and ori-γ regions undergoes dramatic alterations in micrococcal nuclease hypersensitivity as cells cross the G1/S boundary, but only in those copies of the amplicon that are affixed to the nuclear matrix. In contrast, the fine structure of chromatin in the promoter of the dihydrofolate reductase gene does not change detectably as a function of matrix attachment or cell-cycle position. We suggest that attachment of DNA to the nuclear matrix plays an important role in modulating chromatin architecture, and this could facilitate the activity of origins of replication.
Resumo:
Two mouse insulin genes, Ins1 and Ins2, were disrupted and lacZ was inserted at the Ins2 locus by gene targeting. Double nullizygous insulin-deficient pups were growth-retarded. They did not show any glycosuria at birth but soon after suckling developed diabetes mellitus with ketoacidosis and liver steatosis and died within 48 h. Interestingly, insulin deficiency did not preclude pancreas organogenesis and the appearance of the various cell types of the endocrine pancreas. The presence of lacZ expressing β cells and glucagon-positive α cells was demonstrated by cytochemistry and immunocytochemistry. Reverse transcription-coupled PCR analysis showed that somatostatin and pancreatic polypeptide mRNAs were present, although at reduced levels, accounting for the presence also of δ and pancreatic polypeptide cells, respectively. Morphometric analysis revealed enlarged islets of Langherans in the pancreas from insulin-deficient pups, suggesting that insulin might function as a negative regulator of islet cell growth. Whether insulin controls the growth of specific islet cell types and the molecular basis for this action remain to be elucidated.
Resumo:
Tissue factor (TF) is the cellular receptor for an activated form of clotting factor VII (VIIa) and the binding of factor VII(a) to TF initiates the coagulation cascade. Sequence and structural patterns extracted from a global alignment of TF confers homology with interferon receptors of the cytokine receptor super family. Several recent studies suggested that TF could function as a genuine signal transducing receptor. However, it is unknown which biological function(s) of cells are altered upon the ligand, VIIa, binding to TF. In the present study, we examined the effect of VIIa binding to cell surface TF on cellular gene expression in fibroblasts. Differential mRNA display PCR technique was used to identify transcriptional changes in fibroblasts upon VIIa binding to TF. The display showed that VIIa binding to TF either up or down-regulated several mRNA species. The differential expression of one such transcript, VIIa-induced up-regulation, was confirmed by Northern blot analysis. Isolation of a full-length cDNA corresponding to the differentially expressed transcript revealed that VIIa-up-regulated gene was poly(A) polymerase. Northern blot analysis of various carcinomas and normal human tissues revealed an over expression of PAP in cancer tissues. Enhanced expression of PAP upon VIIa binding to tumor cell TF may potentially play an important role in tumor metastasis.
Resumo:
Nineteen benign [World Health Organization (WHO) grade I; MI], 21 atypical (WHO grade II; MII), and 19 anaplastic (WHO grade III; MIII) sporadic meningiomas were screened for chromosomal imbalances by comparative genomic hybridization (CGH). These data were supplemented by molecular genetic analyses of selected chromosomal regions and genes. With increasing malignancy grade, a marked accumulation of genomic aberrations was observed; i.e., the numbers (mean ± SEM) of total alterations detected per tumor were 2.9 ± 0.7 for MI, 9.2 ± 1.2 for MII, and 13.3 ± 1.9 for MIII. The most frequent alteration detected in MI was loss on 22q (58%). In MII, aberrations most commonly identified were losses on 1p (76%), 22q (71%), 14q (43%), 18q (43%), 10 (38%), and 6q (33%), as well as gains on 20q (48%), 12q (43%), 15q (43%), 1q (33%), 9q (33%), and 17q (33%). In MIII, most of these alterations were found at similar frequencies. However, an increase in losses on 6q (53%), 10 (68%), and 14q (63%) was observed. In addition, 32% of MIII demonstrated loss on 9p. Homozygous deletions in the CDKN2A gene at 9p21 were found in 4 of 16 MIII (25%). Highly amplified DNA sequences were mapped to 12q13–q15 by CGH in 1 MII. Southern blot analysis of this tumor revealed amplification of CDK4 and MDM2. By CGH, DNA sequences from 17q were found to be amplified in 1 MII and 8 MIII, involving 17q23 in all cases. Despite the high frequency of chromosomal aberrations in the MII and MIII investigated, none of these tumors showed mutations in exons 5–8 of the TP53 gene. On the basis of the most common aberrations identified in the various malignancy grades, a model for the genomic alterations associated with meningioma progression is proposed.
Resumo:
SacIp dysfunction results in bypass of the requirement for phosphatidylinositol transfer protein (Sec14p) function in yeast Golgi processes. This effect is accompanied by alterations in inositol phospholipid metabolism and inositol auxotrophy. Elucidation of how sac1 mutants effect “bypass Sec14p” will provide insights into Sec14p function in vivo. We now report that, in addition to a dramatic accumulation of phosphatidylinositol-4-phosphate, sac1 mutants also exhibit a specific acceleration of phosphatidylcholine biosynthesis via the CDP-choline pathway. This phosphatidylcholine metabolic phenotype is sensitive to the two physiological challenges that abolish bypass Sec14p in sac1 strains; i.e. phospholipase D inactivation and expression of bacterial diacylglycerol (DAG) kinase. Moreover, we demonstrate that accumulation of phosphatidylinositol-4-phosphate in sac1 mutants is insufficient to effect bypass Sec14p. These data support a model in which phospholipase D activity contributes to generation of DAG that, in turn, effects bypass Sec14p. A significant fate for this DAG is consumption by the CDP-choline pathway. Finally, we determine that CDP-choline pathway activity contributes to the inositol auxotrophy of sac1 strains in a novel manner that does not involve obvious defects in transcriptional expression of the INO1 gene.
Resumo:
Presenilin 1 (PS1) expression is repressed by the p53 tumor suppressor. As shown herein, wild-type PS1 is an effective antiapoptotic molecule capable of significantly inhibiting p53-dependent and p53-independent cell death. We analyzed, at the functional and molecular levels, the brains of p53 knockout mice. Surprisingly, we found that lack of p53 expression induces apoptotic brain lesions, accompanied by learning deficiency and behavioral alterations. p53-deficient mice show an unexpected overexpression of p21waf1 with subsequent down-regulation of PS1 in their brains. This process is progressive and age-dependent. These data indicate that the p53 pathway, besides affecting tumor suppression, may play a major role in regulating neurobehavioral function and cell survival in the brain.
Resumo:
In order to explore the possible role of E-cadherin in familial cancer, 19 familial breast cancer patients, whose tumours demonstrated loss of heterozygosity (LOH) at the E-cadherin locus, were screened for germline mutations. No pathogenic germline alterations were detected in these individuals. However, a somatic mutation was found (49-2A→C) in one of the tumours. This tumour showed a pattern of both ductal and lobular histology. Another 10 families with cases of breast, gastric and colon cancer were also screened for germline mutations, and no mutations were found. A missense mutation in exon 12 of E-cadherin (1774G→A; Ala592Thr) was previously found in one family with diffuse gastric cancer, and colon and breast cancer. An allelic association study was performed to determine whether the Ala592Thr alteration predisposes to breast cancer. In total, we studied 484 familial breast cancer patients, 614 sporadic breast cancer patients and 497 control individuals. The frequencies of this alteration were similar in these groups. However, a correlation between the Ala592Thr alteration and ductal comedo-type tumour was seen. These results, together with previously reported studies, indicate that germline mutations and, more commonly, somatic mutations in E-cadherin may have an influence on the behaviour of the tumours, rather than predispose to breast cancer.
Resumo:
We have changed the potential phosphorylation site, a threonine residue at position 2 of the D2 polypeptide of the photosystem II complex of Chlamydomonas reinhardtii, to alanine, valine, aspartate, proline, glycine, or glutamate. Mutants with neutral amino acid changes did not display any phenotype with regard to photoautotrophic growth, light sensitivity, fluorescence transients, or photoinhibition. Pulse labeling of these mutants with 32P indicated that a phosphorylated protein of the same size as D2 is absent in these mutants, suggesting that threonine-2 is indeed the unique phosphorylation site of D2. In contrast, mutants in which threonine-2 has been replaced with acidic residues are deficient in photosystem II. Use of chimeric genes containing the psbD 5′-untranslated region revealed that the initiation of translation was not affected in these mutants, but the mutations interfered with a later step of D2 synthesis and accumulation.
Resumo:
We evaluated lignin profiles and pulping performances of 2-year-old transgenic poplar (Populus tremula × Populus alba) lines severely altered in the expression of caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) or cinnamyl alcohol dehydrogenase (CAD). Transgenic poplars with CAD or COMT antisense constructs showed growth similar to control trees. CAD down-regulated poplars displayed a red coloration mainly in the outer xylem. A 90% lower COMT activity did not change lignin content but dramatically increased the frequency of guaiacyl units and resistant biphenyl linkages in lignin. This alteration severely lowered the efficiency of kraft pulping. The Klason lignin level of CAD-transformed poplars was slightly lower than that of the control. Whereas CAD down-regulation did not change the frequency of labile ether bonds or guaiacyl units in lignin, it increased the proportion of syringaldehyde and diarylpropane structures and, more importantly with regard to kraft pulping, of free phenolic groups in lignin. In the most depressed line, ASCAD21, a substantially higher content in free phenolic units facilitated lignin solubilization and fragmentation during kraft pulping. These results point the way to genetic modification of lignin structure to improve wood quality for the pulp industry.
Resumo:
Hypertension is a leading cause of cardiovascular, cerebral, and renal disease morbidity and mortality. Here we show that disruption of the Cyp 4a14 gene causes hypertension, which is, like most human hypertension, more severe in males. Male Cyp 4a14 (−/−) mice show increases in plasma androgens, kidney Cyp 4a12 expression, and the formation of prohypertensive 20-hydroxyarachidonate. Castration normalizes the blood pressure of Cyp 4a14 (−/−) mice and minimizes Cyp 4a12 expression and arachidonate ω-hydroxylation. Androgen replacement restores hypertensive phenotype, Cyp 4a12 expression, and 20-hydroxy-arachidonate formation. We conclude that the androgen-mediated regulation of Cyp 4a arachidonate monooxygenases is an important component of the renal mechanisms that control systemic blood pressures. These results provide direct evidence for a role of Cyp 4a isoforms in cardiovascular physiology, establish Cyp 4a14 (−/−) mice as a monogenic model for the study of cause/effect relationships between blood pressure, sex hormones, and P450 ω-hydroxylases, and suggest the human CYP 4A homologues as candidate genes for the analysis of the genetic and molecular basis of human hypertension.
Resumo:
Although Al is one of the major factors limiting crop production, the mechanisms of toxicity remain unknown. The growth inhibition and swelling of roots associated with Al exposure suggest that the cytoskeleton may be a target of Al toxicity. Using indirect immunofluorescence microscopy, microtubules and microfilaments in maize (Zea mays L.) roots were visualized and changes in their organization and stability correlated with the symptoms of Al toxicity. Growth studies showed that the site of Al toxicity was associated with the elongation zone. Within this region, Al resulted in a reorganization of microtubules in the inner cortex. However, the orientation of microtubules in the outer cortex and epidermis remained unchanged even after chronic symptoms of toxicity were manifest. Auxin-induced reorientation and cold-induced depolymerization of microtubules in the outer cortex were blocked by Al pretreatment. These results suggest that Al increased the stability of microtubules in these cells. The stabilizing effect of Al in the outer cortex coincided with growth inhibition. Reoriented microfilaments were also observed in Al-treated roots, and Al pretreatment minimized cytochalasin B-induced microfilament fragmentation. These data show that reorganization and stabilization of the cytoskeleton are closely associated with Al toxicity in maize roots.