17 resultados para C and N mineralization rates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates of serotonin synthesis were measured in the human brain using positron emission tomography. The sensitivity of the method is indicated by the fact that measurements are possible even after a substantial lowering of synthesis induced by acute tryptophan depletion. Unlike serotonin levels in human brain, which vary greatly in different brain areas, rates of synthesis of the indolamine are rather uniform throughout the brain. The mean rate of synthesis in normal males was found to be 52% higher than in normal females; this marked difference may be a factor relevant to the lower incidence of major unipolar depression in males.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 μmol C m−2 s−1, respectively, and 20 to 30 and 15 to 22 μmol C m−2 s−1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantitate the absolute levels of individual mRNAs per yeast cell by hybridizing total yeast RNA with an excess of gene-specific 32P-oligonucleotides, and digesting the resulting RNA-DNA hybrids with S1 nuclease. By comparing the his3 hybridization signal from a known amount of yeast cells to the signal generated by a known amount of his3 RNA synthesized in vitro, we determine that yeast strain KY114 growing in yeast extract/peptone/glucose medium at 30 degrees C contains seven molecules of his3 mRNA per cell. Using a galactose shut-off procedure, we determined that the half-life of his3 mRNA is approximately 11 min under these conditions. From these observations, we calculate that one his3 mRNA molecule is synthesized every 140 s. Analysis of other his3 promoter derivatives suggests that the maximal transcriptional initiation rate in yeast cells is one mRNA molecule every 6-8 s. Using his3 as an internal standard, the number of mRNA molecules per cell have been determined for ded1, trp3, rps4, and gall under a variety of growth conditions. From these results, the absolute mRNA level of any yeast gene can be determined in a single hybridization experiment. Moreover, the rate of transcriptional initiation can be determined for mRNAs whose decay rates are known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of intracellular signaling pathways can modulate the properties of voltage-gated ion channels. Some of them are well characterized. However, the diffusible second messenger mediating suppression of M current via G protein-coupled receptors has not been identified. In superior cervical ganglion neurons, we find that the signaling pathways underlying M current inhibition by B2 bradykinin and M1 muscarinic receptors respond very differently to inhibitors. The bradykinin pathway was suppressed by the phospholipase C inhibitor U-73122, by blocking the IP3 receptor with pentosan polysulfate or heparin, and by buffering intracellular calcium, and it was occluded by allowing IP3 to diffuse into the cytoplasm via a patch pipette. By contrast, the muscarinic pathway was not disrupted by any of these treatments. The addition of bradykinin was accompanied by a [Ca2+]i rise with a similar onset and time to peak as the inhibition of M current. The M current inhibition and the rise of [Ca2+]i were blocked by depletion of Ca2+ internal stores by thapsigargin. We conclude that bradykinin receptors inhibit M current of sympathetic neurons by activating phospholipase C and releasing Ca2+ from IP3-sensitive Ca2+ stores, whereas muscarinic receptors do not use the phospholipase C pathway to inhibit M current channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ARNO is a member of a family of guanine-nucleotide exchange factors with specificity for the ADP-ribosylation factor (ARF) GTPases. ARNO possesses a central catalytic domain with homology to yeast Sec7p and an adjacent C-terminal pleckstrin homology (PH) domain. We have previously shown that ARNO localizes to the plasma membrane in vivo and efficiently catalyzes ARF6 nucleotide exchange in vitro. In addition to a role in endocytosis, ARF6 has also been shown to regulate assembly of the actin cytoskeleton. To determine whether ARNO is an upstream regulator of ARF6 in vivo, we examined the distribution of actin in HeLa cells overexpressing ARNO. We found that, while expression of ARNO leads to disassembly of actin stress fibers, it does not result in obvious changes in cell morphology. However, treatment of ARNO transfectants with the PKC agonist phorbol 12-myristate 13-acetate results in the dramatic redistribution of ARNO, ARF6, and actin into membrane protrusions resembling lamellipodia. This process requires ARF activation, as actin rearrangement does not occur in cells expressing a catalytically inactive ARNO mutant. PKC phosphorylates ARNO at a site immediately C-terminal to its PH domain. However, mutation of this site had no effect on the ability of ARNO to regulate actin rearrangement, suggesting that phosphorylation of ARNO by PKC does not positively regulate its activity. Finally, we demonstrate that an ARNO mutant lacking the C-terminal PH domain no longer mediates cytoskeletal reorganization, indicating a role for this domain in appropriate membrane localization. Taken together, these data suggest that ARNO represents an important link between cell surface receptors, ARF6, and the actin cytoskeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mutagenic effect of low linear energy transfer ionizing radiation is reduced for a given dose as the dose rate (DR) is reduced to a low level, a phenomenon known as the direct DR effect. Our reanalysis of published data shows that for both somatic and germ-line mutations there is an opposite, inverse DR effect, with reduction from low to very low DR, the overall dependence of induced mutations being parabolically related to DR, with a minimum in the range of 0.1 to 1.0 cGy/min (rule 1). This general pattern can be attributed to an optimal induction of error-free DNA repair in a DR region of minimal mutability (MMDR region). The diminished activation of repair at very low DRs may reflect a low ratio of induced (“signal”) to spontaneous background DNA damage (“noise”). Because two common DNA lesions, 8-oxoguanine and thymine glycol, were already known to activate repair in irradiated mammalian cells, we estimated how their rates of production are altered upon radiation exposure in the MMDR region. For these and other abundant lesions (abasic sites and single-strand breaks), the DNA damage rate increment in the MMDR region is in the range of 10% to 100% (rule 2). These estimates suggest a genetically programmed optimatization of response to radiation in the MMDR region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proliferating cell nuclear antigen (PCNA) is a processivity factor required for DNA polymerase δ (or ɛ)-catalyzed DNA synthesis. When loaded onto primed DNA templates by replication factor C (RFC), PCNA acts to tether the polymerase to DNA, resulting in processive DNA chain elongation. In this report, we describe the identification of two separate peptide regions of human PCNA spanning amino acids 36–55 and 196–215 that bind RFC by using the surface plasmon resonance technique. Site-directed mutagenesis of residues within these regions in human PCNA identified two specific sites that affected the biological activity of PCNA. Replacement of the aspartate 41 residue by an alanine, serine, or asparagine significantly impaired the ability of PCNA to (i) support the RFC/PCNA-dependent polymerase δ-catalyzed elongation of a singly primed DNA template; (ii) stimulate RFC-catalyzed DNA-dependent hydrolysis of ATP; (iii) be loaded onto DNA by RFC; and (iv) activate RFC-independent polymerase δ-catalyzed synthesis of poly dT. Introduction of an alanine at position 210 in place of an arginine also reduced the efficiency of PCNA in supporting RFC-dependent polymerase δ-catalyzed elongation of a singly primed DNA template. However, this mutation did not significantly alter the ability of PCNA to stimulate DNA polymerase δ in the absence of RFC but substantially lowered the efficiency of RFC-catalyzed reactions. These results are in keeping with a model in which surface exposed regions of PCNA interact with RFC and the subsequent loading of PCNA onto DNA orients the elongation complex in a manner essential for processive DNA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suppressors of cytokine signaling (SOCS) family of proteins act as intracellular inhibitors of several cytokine signal transduction pathways. Their expression is induced by cytokine activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and they act as a negative feedback loop by subsequently inhibiting the JAK/STAT pathway either by direct interaction with activated JAKs or with the receptors. These interactions are mediated at least in part by the SH2 domain of SOCS proteins but these proteins also contain a highly conserved C-terminal homology domain termed the SOCS box. Here we show that the SOCS box mediates interactions with elongins B and C, which in turn may couple SOCS proteins and their substrates to the proteasomal protein degradation pathway. Analogous to the family of F-box-containing proteins, it appears that the SOCS proteins may act as adaptor molecules that target activated cell signaling proteins to the protein degradation pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type IIA rat brain sodium channel is composed of three subunits: a large pore-forming α subunit and two smaller auxiliary subunits, β1 and β2. The β subunits are single membrane-spanning glycoproteins with one Ig-like motif in their extracellular domains. The Ig motif of the β2 subunit has close structural similarity to one of the six Ig motifs in the extracellular domain of the cell adhesion molecule contactin (also called F3 or F11), which binds to the extracellular matrix molecules tenascin-C and tenascin-R. We investigated the binding of the purified sodium channel and the extracellular domain of the β2 subunit to tenascin-C and tenascin-R in vitro. Incubation of purified sodium channels on microtiter plates coated with tenascin-C revealed saturable and specific binding with an apparent Kd of ≈15 nM. Glutathione S-transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of β2 subunits. Both purified sodium channels and the extracellular domain of the β2 subunit bound specifically to fibronectin type III repeats 1–2, A, B, and 6–8 of tenascin-C and fibronectin type III repeats 1–2 and 6–8 of tenascin-R but not to the epidermal growth factor-like domain or the fibrinogen-like domain of these molecules. The binding of neuronal sodium channels to extracellular matrix molecules such as tenascin-C and tenascin-R may play a crucial role in localizing sodium channels in high density at axon initial segments and nodes of Ranvier or in regulating the activity of immobilized sodium channels in these locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finely tuned Ca2+ signaling system is essential for cells to transduce extracellular stimuli, to regulate growth, and to differentiate. We have recently cloned CaT-like (CaT-L), a highly selective Ca2+ channel closely related to the epithelial calcium channels (ECaC) and the calcium transport protein CaT1. CaT-L is expressed in selected exocrine tissues, and its expression also strikingly correlates with the malignancy of prostate cancer. The expression pattern and selective Ca2+ permeation properties suggest an important function in Ca2+ uptake and a role in tumor progression, but not much is known about the regulation of this subfamily of ion channels. We now demonstrate a biochemical and functional mechanism by which cells can control CaT-L activity. CaT-L is regulated by means of a unique calmodulin binding site, which, at the same time, is a target for protein kinase C-dependent phosphorylation. We show that Ca2+-dependent calmodulin binding to CaT-L, which facilitates channel inactivation, can be counteracted by protein kinase C-mediated phosphorylation of the calmodulin binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-type and P/Q-type Ca2+ channels are inhibited by neurotransmitters acting through G protein-coupled receptors in a membrane-delimited pathway involving Gβγ subunits. Inhibition is caused by a shift from an easily activated “willing” (W) state to a more-difficult-to-activate “reluctant” (R) state. This inhibition can be reversed by strong depolarization, resulting in prepulse facilitation, or by protein kinase C (PKC) phosphorylation. Comparison of regulation of N-type Ca2+ channels containing Cav2.2a α1 subunits and P/Q-type Ca2+ channels containing Cav2.1 α1 subunits revealed substantial differences. In the absence of G protein modulation, Cav2.1 channels containing Cavβ subunits were tonically in the W state, whereas Cav2.1 channels without β subunits and Cav2.2a channels with β subunits were tonically in the R state. Both Cav2.1 and Cav2.2a channels could be shifted back toward the W state by strong depolarization or PKC phosphorylation. Our results show that the R state and its modulation by prepulse facilitation, PKC phosphorylation, and Cavβ subunits are intrinsic properties of the Ca2+ channel itself in the absence of G protein modulation. A common allosteric model of G protein modulation of Ca2+-channel activity incorporating an intrinsic equilibrium between the W and R states of the α1 subunits and modulation of that equilibrium by G proteins, Cavβ subunits, membrane depolarization, and phosphorylation by PKC accommodates our findings. Such regulation will modulate transmission at synapses that use N-type and P/Q-type Ca2+ channels to initiate neurotransmitter release.