36 resultados para Basal Ganglia
Resumo:
The cAMP response element-binding protein (CREB) is an activity-dependent transcription factor that is involved in neural plasticity. The kinetics of CREB phosphorylation have been suggested to be important for gene activation, with sustained phosphorylation being associated with downstream gene expression. If so, the duration of CREB phosphorylation might serve as an indicator for time-sensitive plastic changes in neurons. To screen for regions potentially involved in dopamine-mediated plasticity in the basal ganglia, we used organotypic slice cultures to study the patterns of dopamine- and calcium-mediated CREB phosphorylation in the major subdivisions of the striatum. Different durations of CREB phosphorylation were evoked in the dorsal and ventral striatum by activation of dopamine D1-class receptors. The same D1 stimulus elicited (i) transient phosphorylation (≤15 min) in the matrix of the dorsal striatum; (ii) sustained phosphorylation (≤2 hr) in limbic-related structures including striosomes, the nucleus accumbens, the fundus striati, and the bed nucleus of the stria terminalis; and (iii) prolonged phosphorylation (up to 4 hr or more) in cellular islands in the olfactory tubercle. Elevation of Ca2+ influx by stimulation of L-type Ca2+ channels, NMDA, or KCl induced strong CREB phosphorylation in the dorsal striatum but not in the olfactory tubercle. These findings differentiate the response of CREB to dopamine and calcium signals in different striatal regions and suggest that dopamine-mediated CREB phosphorylation is persistent in limbic-related regions of the neonatal basal ganglia. The downstream effects activated by persistent CREB phosphorylation may include time-sensitive neuroplasticity modulated by dopamine.
Resumo:
Ras proteins, key regulators of growth, differentiation, and malignant transformation, recently have been implicated in synaptic function and region-specific learning and memory functions in the brain. Rap proteins, members of the Ras small G protein superfamily, can inhibit Ras signaling through the Ras/Raf-1/mitogen-activated protein (MAP) kinase pathway or, through B-Raf, can activate MAP kinase. Rap and Ras proteins both can be activated through guanine nucleotide exchange factors (GEFs). Many Ras GEFs, but to date only one Rap GEF, have been identified. We now report the cloning of a brain-enriched gene, CalDAG-GEFI, which has substrate specificity for Rap1A, dual binding domains for calcium (Ca2+) and diacylglycerol (DAG), and enriched expression in brain basal ganglia pathways and their axon-terminal regions. Expression of CalDAG-GEFI activates Rap1A and inhibits Ras-dependent activation of the Erk/MAP kinase cascade in 293T cells. Ca2+ ionophore and phorbol ester strongly and additively enhance this Rap1A activation. By contrast, CalDAG-GEFII, a second CalDAG-GEF family member that we cloned and found identical to RasGRP [Ebinu, J. O., Bottorff, D. A., Chan, E. Y. W., Stang, S. L., Dunn, R. J. & Stone, J. C. (1998) Science 280, 1082–1088], exhibits a different brain expression pattern and fails to activate Rap1A, but activates H-Ras, R-Ras, and the Erk/MAP kinase cascade under Ca2+ and DAG modulation. We propose that CalDAG-GEF proteins have a critical neuronal function in determining the relative activation of Ras and Rap1 signaling induced by Ca2+ and DAG mobilization. The expression of CalDAG-GEFI and CalDAG-GEFII in hematopoietic organs suggests that such control may have broad significance in Ras/Rap regulation of normal and malignant states.
Resumo:
The basal ganglia are known to receive inputs from widespread regions of the cerebral cortex, such as the frontal, parietal, and temporal lobes. Of these cortical areas, only the frontal lobe is thought to be the target of basal ganglia output. One of the cortical regions that is a source of input to the basal ganglia is area TE, in inferotemporal cortex. This cortical area is thought to be critically involved in the recognition and discrimination of visual objects. Using retrograde transneuronal transport of herpes simplex virus type 1, we have found that one of the output nuclei of the basal ganglia, the substantia nigra pars reticulata, projects via the thalamus to TE. Thus, TE is not only a source of input to the basal ganglia, but also is a target of basal ganglia output. This result implies that the output of the basal ganglia influences higher order aspects of visual processing. In addition, we propose that dysfunction of the basal ganglia loop with TE leads to alterations in visual perception, including visual hallucinations.
Resumo:
Two different attentional networks have been associated with visuospatial attention and conflict resolution. In most situations either one of the two networks is active or both are increased in activity together. By using functional magnetic resonance imaging and a flanker task, we show conditions in which one network (anterior attention system) is increased in activity whereas the other (visuospatial attention system) is reduced, showing that attentional conflict and selection are separate aspects of attention. Further, we distinguish between neural systems involved in different forms of conflict. Specifically, we dissociate patterns of activity in the basal ganglia and insula cortex during simple violations in expectancies (i.e., sudden changes in the frequency of an event) from patterns of activity in the anterior attention system specifically correlated with response conflict as evidenced by longer response latencies and more errors. These data provide a systems-level approach in understanding integrated attentional networks.
Resumo:
The A2AR is largely coexpressed with D2Rs and enkephalin mRNA in the striatum where it modulates dopaminergic activity. Activation of the A2AR antagonizes D2R-mediated behavioral and neurochemical effects in the basal ganglia through a mechanism that may involve direct A2AR–D2R interaction. However, whether the D2R is required for the A2AR to exert its neural function is an open question. In this study, we examined the role of D2Rs in A2AR-induced behavioral and cellular responses, by using genetic knockout (KO) models (mice deficient in A2ARs or D2Rs or both). Behavioral analysis shows that the A2AR agonist 2–4-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine reduced spontaneous as well as amphetamine-induced locomotion in both D2 KO and wild-type mice. Conversely, the nonselective adenosine antagonist caffeine and the A2AR antagonist 8-(3-chlorostyryl)caffeine produced motor stimulation in mice lacking the D2R, although the stimulation was significantly attentuated. At the cellular level, A2AR inactivation counteracted the increase in enkephalin expression in striatopallidal neurons caused by D2R deficiency. Consistent with the D2 KO phenotype, A2AR inactivation partially reversed both acute D2R antagonist (haloperidol)-induced catalepsy and chronic haloperidol-induced enkephalin mRNA expression. Together, these results demonstrate that A2ARs elicit behavioral and cellular responses despite either the genetic deficiency or pharmacological blockade of D2Rs. Thus, A2AR-mediated neural functions are partially independent of D2Rs. Moreover, endogenous adenosine acting at striatal A2ARs may be most accurately viewed as a facilitative modulator of striatal neuronal activity rather than simply as an inhibitory modulator of D2R neurotransmission.
Resumo:
Doxycycline (Dox)-sensitive co-regulation of two transcriptionally coupled transgenes was investigated in the mouse. For this, we generated four independent mouse lines carrying coding regions for green fluorescent protein (GFP) and β-galactosidase in a bicistronic, bidirectional module. In all four lines the expression module was silent but was activated when transcription factor tTA was provided by the α-CaMKII-tTA transgene. In vivo analysis of GFP fluorescence, β-galactosidase and immunochemical stainings revealed differences in GFP and β-galactosidase levels between the lines, but comparable patterns of expression. Strong signals were found in neurons of the olfactory system, neocortical, limbic lobe and basal ganglia structures. Weaker expression was limited to thalamic, pontine and medullary structures, the spinal cord, the eye and to some Purkinje cells in the cerebellum. Strong GFP signals were always accompanied by intense β-galactosidase activity, both of which could be co-regulated by Dox. We conclude that the tTA-sensitive bidirectional expression module is well suited to express genes of interest in a regulated manner and that GFP can be used to track transcriptional activity of the module in the living mouse.
Resumo:
Bird song, like human speech, is a learned vocal behavior that requires auditory feedback. Both as juveniles, while they learn to sing, and as adults, songbirds use auditory feedback to compare their own vocalizations with an internal model of a target song. Here we describe experiments that explore a role for the songbird anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit, in evaluating song feedback and modifying vocal output. First, neural recordings in anesthetized, juvenile birds show that single AFP neurons are specialized to process the song stimuli that are compared during sensorimotor learning. AFP neurons are tuned to both the bird's own song and the tutor song, even when these stimuli are manipulated to be very different from each other. Second, behavioral experiments in adult birds demonstrate that lesions to the AFP block the deterioration of song that normally follows deafening. This observation suggests that deafening results in an instructive signal, indicating a mismatch between feedback and the internal song model, and that the AFP is involved in generating or transmitting this instructive signal. Finally, neural recordings from behaving birds reveal robust singing-related activity in the AFP. This activity is likely to originate from premotor areas and could be modulated by auditory feedback of the bird's own voice. One possibility is that this activity represents an efference copy, predicting the sensory consequences of motor commands. Overall, these studies illustrate that sensory and motor processes are highly interrelated in this circuit devoted to vocal learning, as is true for brain areas involved in speech.
Resumo:
Manganese superoxide dismutase (SOD2) converts superoxide to oxygen plus hydrogen peroxide and serves as the primary defense against mitochondrial superoxide. Impaired SOD2 activity in humans has been associated with several chronic diseases, including ovarian cancer and type I diabetes, and SOD2 overexpression appears to suppress malignancy in cultured cells. We have produced a line of SOD2 knockout mice (SOD2m1BCM/SOD2m1BCM) that survive up to 3 weeks of age and exhibit several novel pathologic phenotypes including severe anemia, degeneration of neurons in the basal ganglia and brainstem, and progressive motor disturbances characterized by weakness, rapid fatigue, and circling behavior. In addition, SOD2m1BCM/SOD2m1BCM mice older than 7 days exhibit extensive mitochondrial injury within degenerating neurons and cardiac myocytes. Approximately 10% of SOD2m1BCM/SOD2m1BCM mice exhibit markedly enlarged and dilated hearts. These observations indicate that SOD2 deficiency causes increased susceptibility to oxidative mitochondrial injury in central nervous system neurons, cardiac myocytes, and other metabolically active tissues after postnatal exposure to ambient oxygen concentrations. Our SOD2-deficient mice differ from a recently described model in which homozygotes die within the first 5 days of life with severe cardiomyopathy and do not exhibit motor disturbances, central nervous system injury, or ultrastructural evidence of mitochondrial injury.
Resumo:
Only three isoforms of adenylyl cyclase (EC 4.6.1.1) mRNAs (AC1, -2, and -5) are expressed at high levels in rat brain. AC1 occurs predominantly in hippocampus and cerebellum, AC5 is restricted to the basal ganglia, whereas AC2 is more widely expressed, but at much lower levels. The distribution and abundance of adenylyl cyclase protein were examined by immunohistochemistry with an antiserum that recognizes a peptide sequence shared by all known mammalian adenylyl cyclase isoforms. The immunoreactivity in striatum and hippocampus could be readily interpreted within the context of previous in situ hybridization studies. However, extending the information that could be gathered by comparisons with in situ hybridization analysis, it was apparent that staining was confined to the neuropil--corresponding to immunoreactive dendrites and axon terminals. Electron microscopy indicated a remarkably selective subcellular distribution of adenylyl cyclase protein. In the CA1 area of the hippocampus, the densest immunoreactivity was seen in postsynaptic densities in dendritic spine heads. Labeled presynaptic axon terminals were also observed, indicating the participation of adenylyl cyclase in the regulation of neurotransmitter release. The selective concentration of adenylyl cyclases at synaptic sites provides morphological data for understanding the pre- and postsynaptic roles of adenylyl cyclase in discrete neuronal circuits in rat brain. The apparent clustering of adenylyl cyclases, coupled with other data that suggest higher-order associations of regulatory elements including G proteins, N-methyl-D-aspartate receptors, and cAMP-dependent protein kinases, suggests not only that the primary structural information has been encoded to render the cAMP system responsive to the Ca(2+)-signaling system but also that higher-order strictures are in place to ensure that Ca2+ signals are economically delivered and propagated.
Resumo:
A method for simultaneous iontophoretic injections of the anterograde tracer Phaseolus vulgaris leukoagglutinin and the retrograde tracer fluorogold was used to characterize in the rat a hypothalamothalamocortical pathway ending in a region thought to regulate attentional mechanisms by way of eye and head movements. The relevant medial hypothalamic nuclei receive pheromonal information from the amygdala and project to specific parts of the thalamic nucleus reuniens and anteromedial nucleus, which then project to a specific lateral part of the retrosplenial area (or medial visual cortex). This cortical area receives a convergent input from the lateral posterior thalamic nucleus and projects to the superior colliculus. Bidirectional connections with the hippocampal formation suggest that activity in this circuit is modified by previous experience. Striking parallels with basal ganglia circuitry are noted.
Resumo:
Ceruloplasmin is an abundant alpha 2-serum glycoprotein that contains 95% of the copper found in the plasma of vertebrate species. We report here on the identification of a genetic defect in the ceruloplasmin gene in a patient previously noted to have a total absence of circulating serum ceruloplasmin in association with late-onset retinal and basal ganglia degeneration. In this patient T2 (transverse relaxation time)-weighted magnetic resonance imaging of the brain revealed basal ganglia densities consistent with iron deposition, and liver biopsy confirmed the presence of excess iron. Although Southern blot analysis of the patient's DNA was normal, PCR amplification of 18 of the 19 exons composing the human ceruloplasmin gene revealed a distinct size difference in exon 7. DNA sequence analysis of this exon revealed a 5-bp insertion at amino acid 410, resulting in a frame-shift mutation and a truncated open reading frame. The validity of this mutation was confirmed by analysis of DNA from the patient's daughter, which revealed heterozygosity for this same 5-bp insertion. The presence of this mutation in conjunction with the clinical and pathologic findings demonstrates an essential role for ceruloplasmin in human biology and identifies aceruloplasminemia as an autosomal recessive disorder of iron metabolism. These findings support previous studies that identified ceruloplasmin as a ferroxidase and are remarkably consistent with recent studies on the essential role of a homologous copper oxidase in iron metabolism in yeast. The clinical and laboratory findings suggest that additional patients with movement disorders and nonclassical Wilson disease should be examined for ceruloplasmin gene mutations.
Resumo:
Varicella–zoster virus (VZV) is a human herpesvirus that causes varicella (chicken pox) as a primary infection and, after a variable period of latency in trigeminal and dorsal root ganglia, reactivates to cause herpes zoster (shingles). Both of these conditions may be followed by a variety of neurological complications, especially in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. There have been a number of conflicting reports regarding the cellular location of latent VZV within human ganglia. To address this controversy we examined fixed wax-embedded trigeminal ganglia from 30 individuals obtained at autopsy, including 11 with HIV infection, 2 neonates, and 17 immunocompetent individuals, for the presence of latent VZV. Polymerase chain reaction (PCR), in situ hybridization, and PCR in situ amplification techniques with oligonucleotide probes and primer sequences to VZV genes 18, 21, 29, and 63 were used. VZV DNA in ganglia was detected in 15 individuals by using PCR alone, and in 12 individuals (6 normal non-HIV and 6 positive HIV individuals, but not neonatal ganglia) by using PCR in situ amplification. When in situ hybridization alone was used, 5 HIV-positive individuals and only 1 non-HIV individual showed VZV nucleic acid signals in ganglia. In all of the VZV-positive ganglia examined, VZV nucleic acid was detected in neuronal nuclei. Only occasional nonneuronal cells contained VZV DNA. We conclude from these studies that the neuron is the predominant site of latent VZV in human trigeminal ganglia.
Resumo:
Nicotine at very low doses (5–30 nM) induced large amounts of luteinizing hormone-releasing hormone (LHRH) release, which was monitored as slow membrane depolarizations in the ganglionic neurons of bullfrog sympathetic ganglia. A nicotinic antagonist, d-tubocurarine chloride, completely and reversibly blocked the nicotine-induced LHRH release, but it did not block the nerve-firing-evoked LHRH release. Thus, nicotine activated nicotinic acetylcholine receptors and produced LHRH release via a mechanism that is different from the mechanism for evoked release. Moreover, this release was not caused by Ca2+ influx through either the nicotinic receptors or the voltage-gated Ca2+ channels because the release was increased moderately when the extracellular solution was changed into a Ca2+-free solution that also contained Mg2+ (4 mM) and Cd2+ (200 μM). The release did not depend on Ca2+ release from the intraterminal Ca2+ stores either because fura-2 fluorimetry showed extremely low Ca2+ elevation (≈30 nM) in response to nicotine (30 nM). Moreover, nicotine evoked LHRH release when [Ca2+] elevation in the terminals was prevented by loading the terminals with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid and fura-2. Instead, the nicotine-induced release required extracellular Na+ because substitution of extracellular NaCl with N-methyl-d-glucamine chloride completely blocked the release. The Na+-dependent mechanism was not via Na+ influx through the voltage-gated Na+ channels because the release was not affected by tetrodotoxin (1–50 μM) plus Cd2+ (200 μM). Thus, nicotine at very low concentrations induced LHRH release via a Na+-dependent, Ca2+-independent mechanism.
Resumo:
The mahogany (mg) locus originally was identified as a recessive suppressor of agouti, a locus encoding a skin peptide that modifies coat color by antagonizing the melanocyte-stimulating hormone receptor or MC1-R. Certain dominant alleles of agouti cause an obesity syndrome when ectopic expression of the peptide aberrantly antagonizes the MC4-R, a related melanocyte-stimulating hormone receptor expressed in hypothalamic circuitry and involved in the regulation of feeding behavior and metabolism. Recent work has demonstrated that mg, when homozygous, blocks not only the ability of agouti to induce a yellow coat color when expressed in the skin of the lethal yellow mouse (AY), but also the obesity resulting from ectopic expression of agouti in the brain. Detailed analysis of mg/mg AY/a animals, presented here, demonstrates that mg/mg blocks the obesity, hyperinsulinemia, and increased linear growth induced by ectopic expression of the agouti peptide. Remarkably, however, mg/mg did not reduce hyperphagia in the AY/a mouse. Furthermore, mg/mg induced hyperphagia and an increase in basal metabolic rate in the C57BL/6J mouse in the absence of AY. Consequently, although mahogany is broadly required for agouti peptide action, it also appears to be involved in the control of metabolic rate and feeding behavior independent of its suppression of agouti.
Resumo:
We have cloned the UNI3 gene in Chlamydomonas and find that it encodes a new member of the tubulin superfamily. Although Uni3p shares significant sequence identity with α-, β-, and γ-tubulins, there is a region of Uni3p that has no similarity to tubulins or other known proteins. Mutant uni3–1 cells assemble zero, one, or two flagella. Pedigree analysis suggests that flagellar number in uni3–1 cells is a function of the age of the cell. The uniflagellate uni3–1 cells show a positional phenotype; the basal body opposite the eyespot templates the single flagellum. A percentage of uni3–1 cells also fail to orient the cleavage furrow properly, and basal bodies have been implicated in the placement of cleavage furrows in Chlamydomonas. Finally when uni3–1 cells are observed by electron microscopy, doublet rather than triplet microtubules are observed at the proximal end of the basal bodies. We propose that the Uni3 tubulin is involved in both the function and cell cycle-dependent maturation of basal bodies/centrioles.