18 resultados para Acute infection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of immune responses to infection by a pathogenic or a nonpathogenic immunodeficiency virus in macaques may provide insights into pathogenetic events leading to simian AIDS. This work is aimed at exploring cytokine expression during infection by simian immunodeficiency virus (SIV). We used semiquantitative reverse transcription-PCR to monitor interleukin (IL)-2/interferon (IFN)-gamma (Th1-like), and IL-4/IL-10 (Th2-like) expression in unmanipulated peripheral blood mononuclear cells (PBMCs), during the acute phase of infection of eight cynomolgus macaques (Macaca fascicularis) with a pathogenic primary isolate of SIVmac251 (full-length nef), and of four other cynomolgus macaques by an attenuated molecular clone of SIVmac251 (nef-truncated). All the monkeys became infected, as clearly shown by the presence of infected PBMCs and by seroconversion. Nevertheless, PBMC-associated virus loads and p27 antigenemia in monkeys infected by the attenuated virus clone remained lower than those observed in animals infected with the pathogenic SIVmac251 isolate. A rise of IL-10 mRNA expression occurred in both groups of monkeys coincident with the peak of viral replication. In monkeys infected with the pathogenic SIVmac251, IL-2, IL-4, and IFN-gamma mRNAs were either weakly detectable or undetectable. On the contrary, animals infected by the attenuated virus exhibited an overexpression of these cytokine mRNAs during the first weeks after inoculation. The lack of expression of these cytokines in monkeys infected with the pathogenic primary isolate may reflect early immunodeficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Production of nitric oxide by macrophages is believed to be an important microbicidal mechanism for a variety of intracellular pathogens, including Toxoplasma gondii. Mice with a targeted disruption of the inducible nitric oxide synthase gene (iNOS) were infected orally with T. gondii tissue cysts. Time to death was prolonged compared with parental controls. Histologic analysis of tissue from infected mice showed scattered small foci of inflammation with parasites in various tissues of iNOS−/− mice, whereas tissue from the parental C57BL/6 mice had more extensive tissue inflammation with few visible parasites. In particular, extensive ulceration and necrosis of distal small intestine and fatty degeneration of the liver was seen in the parental mice at day 7 postinfection, as compared with the iNOS−/− mice where these tissues appeared normal. Serum interferon γ and tumor necrosis factor α levels postinfection were equally elevated in both mouse strains. Treatment of the parental mice with a NO synthase inhibitor, aminoguanidine, prevented early death in these mice as well as the hepatic degeneration and small bowel necrosis seen in acutely infected control parentals. These findings indicate that NO production during acute infection with T. gondii can kill intracellular parasites but can be detrimental, even lethal, to the host.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To elucidate the functions of human immunodeficiency virus type 1 (HIV-1) genes in a nonhuman primate model, we have constructed infectious recombinant viruses (chimeras) between the pathogenic molecular clone of simian immunodeficiency virus (SIV) SIVmac239 and molecular clones of HIV-1 that differ in phenotypic properties controlled by the env gene. HIV-1SF33 is a T-cell-line-tropic virus which induces syncytia, and HIV-1SF162 is a macrophage-tropic virus that does not induce syncytia. A DNA fragment encoding tat, rev, and env (gp160) of SIVmac239 has been replaced with the counterpart genetic region of HIV-1SF33 and HIV-1SF162 to derive chimeric recombinant simian/human immunodeficiency virus (SHIV) strains SHIVSF33 and SHIVSF162, respectively. In the acute infection stage, macaques inoculated with SHIVSF33 had levels of viremia similar to macaques infected with SIVmac239, whereas virus loads were 1/10th to 1/100th those in macaques infected with SHIVSF162. Of note is the relatively small amount of virus detected in lymph nodes of SHIVSF162-infected macaques. In the chronic infection stage, macaques infected with SHIVSF33 also showed higher virus loads than macaques infected with SHIVSF162. Virus persists for over 1 year, as demonstrated by PCR for amplification of viral DNA in all animals and by virus isolation in some animals. Antiviral antibodies, including antibodies to the HIV-1 env glycoprotein (gp160), were detected; titers of antiviral antibodies were higher in macaques infected with SHIVSF33 than in macaques infected with SHIVSF162. Although virus has persisted for over 1 year after inoculation, these animals have remained healthy with no signs of immunodeficiency. These findings demonstrate the utility of the SHIV/macaque model for analyzing HIV-1 env gene functions and for evaluating vaccines based on HIV-1 env antigens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epithelial defensins provide an active defense against the external microbial environment. We investigated the distribution and expression of this class of antimicrobial peptides in normal cattle and in animals in varying states of disease. β-defensin mRNA was found to be widely expressed in numerous exposed epithelia but was found at higher levels in tissues that are constantly exposed to and colonized by microorganisms. We observed induction in ileal mucosa during chronic infection with Mycobacterium paratuberculosis and in bronchial epithelium after acute infection with Pasteurella haemolytica. It has been proposed that expression of antimicrobial peptides is an integral component of the inflammatory response. The results reported here support this hypothesis and suggest that epithelial defensins provide a rapidly mobilized local defense against infectious organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adenovirus (Ad) genome contains immunoregulatory and cytokine inhibitory genes that are presumed to function in facilitating acute infection or in establishing persistence in vivo. Some of these genes are clustered in early region 3 (E3), which contains a 19-kDa glycoprotein (gp19) that inhibits the transport of selected class I major histocompatibility complex (MHC) molecules out of the endoplasmic reticulum. In addition, the E3 region contains three protein inhibitors of the cytolytic function of tumor necrosis factor α (TNF-α). Because type I autoimmune diabetes destroys islets by mechanisms that involve class I MHC and TNF-α, we investigated whether the entire cassette of Ad E3 genes might prevent the onset of diabetes in a well studied lymphocytic choriomeningitis viral (LCMV) murine model of virus-induced autoimmune diabetes. In this model, a LCMV polypeptide (either glycoprotein or nucleoprotein) expressed as a transgene in the islets is a target for autoimmune destruction of β cells after LCMV infection. In this scenario the LCMV-induced immune response is directed not only against the virus but also against the LCMV transgenes expressed in the β cells. Our experiments demonstrated a very efficient prevention of this LCMV-triggered diabetes by the Ad E3 genes. This resulted from the inhibition of target cell recognition by a fully competent and LCMV-primed immune system. Unlike the results from the β-2 microglobulin gene deletion experiments, our approach shows that selective regulation at the level of the target cell is sufficient to prevent autoimmune diabetes without disrupting the function of the systemic immune response. Although the Ad genes in these experiments were provided as transgenes, recent experiments may permit the introduction of such genes through the use of viral vectors. Although the decrease in class I MHC in islets by Ad genes was demonstrated in these in vivo studies, the relative importance of this process and the control of TNF-α cytolysis must await further genetic dissection of the introduced Ad genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large sections of the 3′ untranslated region (UTR) of hepatitis C virus (HCV) were deleted from an infectious cDNA clone, and the RNA transcripts from seven deletion mutants were tested sequentially for infectivity in a chimpanzee. Mutants lacking all or part of the 3′ terminal conserved region or the poly(U–UC) region were unable to infect the chimpanzee, indicating that both regions are critical for infectivity in vivo. However, the third region, the variable region, was able to tolerate a deletion that destroyed the two putative stem–loop structures within this region. Mutant VR-24 containing a deletion of the proximal 24 nt of the variable region of the 3′ UTR was viable in the chimpanzee and seemed to replicate as well as the undeleted parent virus. The chimpanzee became viremic 1 week after inoculation with mutant VR-24, and the HCV genome titer increased over time during the early acute infection. Therefore, the poly(U–UC) region and the conserved region, but not the variable region, of the 3′ UTR seem to be critical for in vivo infectivity of HCV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The murine γ-herpesvirus 68 replicates in epithelial sites after intranasal challenge, then persists in various cell types, including B lymphocytes. Mice that lack CD4+ T cells (I-Ab−/−) control the acute infection, but suffer an ultimately lethal recrudescence of lytic viral replication in the respiratory tract. The consequences of CD4+ T cell deficiency for the generation and maintenance of murine γ-herpesvirus 68-specific CD8+ set now have been analyzed by direct staining with viral peptides bound to major histocompatibility complex class I tetramers and by a spectrum of functional assays. Both acutely and during viral reactivation, the CD8+ T cell responses in the I-Ab−/− group were no less substantial than in the I-Ab+/+ controls. Indeed, virus-specific CD8+ T cell numbers were increased in the lymphoid tissue of clinically compromised I-Ab−/− mice, although relatively few of the potential cytotoxic T lymphocyte effectors were recruited back to the site of pathology in the lung. Thus the viral reactivation that occurs in the absence of CD4+ T cells was not associated with any exhaustion of the virus-specific cytotoxic T lymphocyte response. It seems that CD8+ T cells alone are insufficient to maintain long-term control of this persistent γ-herpesvirus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When treated with heat-killed bacterial cells, mosquito cells in culture respond by up-regulating several proteins. Among these is a 66-kDa protein (p66) that is secreted from cells derived from both Aedes aegypti and Aedes albopictus. p66 was degraded by proteolysis and gave a virtually identical pattern of peptide products for each mosquito species. The sequence of one peptide (31 amino acids) was determined and found to have similarity to insect transferrins. By using conserved regions of insect transferrin sequences, degenerate oligonucleotide PCR primers were designed and used to isolate a cDNA clone encoding an A. aegypti transferrin. The encoded protein contained a signal sequence that, when cleaved, would yield a mature protein of 68 kDa. It contained the 31-amino acid peptide, and the 3′ end exactly matched a cDNA encoding a polypeptide that is up-regulated when A. aegypti encapsulates filarial worms [Beerntsen, B. T., Severson, D. W. & Christensen, B. M. (1994) Exp. Parasitol. 79, 312–321]. This transferrin, like those of two other insect species, has conserved iron-binding residues in the N-terminal lobe but not in the C-terminal lobe, which also has large deletions in the polypeptide chain, compared with transferrins with functional C-terminal lobes. The hypothesis is developed that this transferrin plays a role similar to vertebrate lactoferrin in sequestering iron from invading organisms and that degradation of the structure of the C-terminal lobe might be a mechanism for evading pathogens that elaborate transferrin receptors to tap sequestered iron.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Persistent infection with hepatitis C virus (HCV) is among the leading causes of chronic liver disease. Previous studies suggested that genetic variation in hypervariable region 1 (HVR1) of the second envelope protein, possibly in response to host immune pressure, influences the outcome of HCV infection. In the present study, a chimpanzee transfected intrahepatically with RNA transcripts of an infectious HCV clone (pCV-H77C) from which HVR1 was deleted became infected; the ΔHVR1 virus was subsequently transmitted to a second chimpanzee. Infection with ΔHVR1 virus resulted in persistent infection in the former chimpanzee and in acute resolving infection in the latter chimpanzee. Both chimpanzees developed hepatitis. The ΔHVR1 virus initially replicated to low titers, but virus titer increased significantly after mutations appeared in the viral genome. Thus, wild-type HCV without HVR1 was apparently attenuated, suggesting a functional role of HVR1. However, our data indicate that HVR1 is not essential for the viability of HCV, the resolution of infection, or the progression to chronicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To improve the usefulness of in vivo mode for the investigation of the pathophysiology of human immunodeficiency virus (HIV) infection, we modified the construction of SCID mice implanted with human fetal thymus and liver (thy/liv-SCID-hu mice) so that the peripheral blood of the mice contained significant numbers of human monocytes and T cells. After inoculation with HIV-1(59), a primary patient isolate capable of infecting monocytes and T cells, the modified thy/liv-SCID-hu mice developed disseminated HIV infection that was associated with plasma viremia. The development of plasma viremia and HIV infection in thy/liv-SCID-hu mice inoculated with HIV-1(59) was inhibited by acute treatment with human interleukin (IL) 10 but not with human IL-12. The human peripheral blood mononuclear cells in these modified thy/liv-SCID-hu mice were responsive to in vivo treatment with exogenous cytokines. Human interferon gamma expression in the circulating human peripheral blood mononuclear cells was induced by treatment with IL-12 and inhibited by treatment with IL-10. Thus, these modified thy/liv-SCID-hu mice should prove to be a valuable in vivo model for examining the role of immunomodulatory therapy in modifying HIV infection. Furthermore, our demonstration of the vivo inhibitory effect of IL-10 on acute HIV infection suggests that further studies may be warranted to evaluate whether there is a role for IL-10 therapy in preventing HIV infection in individuals soon after exposure to HIV such as for children born to HIV-infected mothers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of the neutralization domains of hepatitis C virus (HCV) is essential for the development of an effective vaccine. Here, we show that the hypervariable region 1 (HVR1) of the envelope 2 (E2) protein is a critical neutralization domain of HCV. Neutralization of HCV in vitro was attempted with a rabbit hyperimmune serum raised against a homologous synthetic peptide derived from the HVR1 of the E2 protein, and the residual infectivity was evaluated by inoculation of HCV-seronegative chimpanzees. The source of HCV was plasma obtained from a patient (H) during the acute phase of posttransfusion non-A, non-B hepatitis, which had been titered for infectivity in chimpanzees. The anti-HVR1 antiserum induced protection against homologous HCV infection in chimpanzees, but not against the emergence of neutralization escape mutants that were found to be already present in the complex viral quasispecies of the inoculum. The finding that HVR1 can elicit protective immunity opens new perspectives for the development of effective preventive strategies. However, the identification of the most variable region of HCV as a critical neutralization domain poses a major challenge for the development of a broadly reactive vaccine against HCV.