1 resultado para internet traffic classification machine learning apache spark hadoop big data word2vec
em Scielo Uruguai
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (8)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (16)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (29)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (23)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (8)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (38)
- CentAUR: Central Archive University of Reading - UK (11)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (11)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (24)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (7)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Open Access Repository of Association for Learning Technology (ALT) (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (162)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de La Laguna (2)
- Repositorio Institucional de la Universidad de Málaga (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (35)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Uruguai (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (9)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (38)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universidade Metodista de São Paulo (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (17)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (22)
- University of Southampton, United Kingdom (6)
- University of Washington (17)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Melanoma is a type of skin cancer and is caused by the uncontrolled growth of atypical melanocytes. In recent decades, computer aided diagnosis is used to support medical professionals; however, there is still no globally accepted tool. In this context, similar to state-of-the-art we propose a system that receives a dermatoscopy image and provides a diagnostic if the lesion is benign or malignant. This tool is composed with next modules: Preprocessing, Segmentation, Feature Extraction, and Classification. Preprocessing involves the removal of hairs. Segmentation is to isolate the lesion. Feature extraction is considering the ABCD dermoscopy rule. The classification is performed by the Support Vector Machine. Experimental evidence indicates that the proposal has 90.63 % accuracy, 95 % sensitivity, and 83.33 % specificity on a data-set of 104 dermatoscopy images. These results are favorable considering the performance of diagnosis by traditional progress in the area of dermatology