1 resultado para image texture analysis
em Scielo Uruguai
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (36)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (53)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (61)
- Brock University, Canada (7)
- CentAUR: Central Archive University of Reading - UK (41)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (20)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (31)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- Digital Archives@Colby (9)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (3)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (23)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (9)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (10)
- National Center for Biotechnology Information - NCBI (4)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (50)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (23)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (145)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (14)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (43)
- Scielo Uruguai (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (61)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (15)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (54)
- Université de Montréal, Canada (12)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (27)
- University of Southampton, United Kingdom (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
In the last decade, research in Computer Vision has developed several algorithms to help botanists and non-experts to classify plants based on images of their leaves. LeafSnap is a mobile application that uses a multiscale curvature model of the leaf margin to classify leaf images into species. It has achieved high levels of accuracy on 184 tree species from Northeast US. We extend the research that led to the development of LeafSnap along two lines. First, LeafSnap’s underlying algorithms are applied to a set of 66 tree species from Costa Rica. Then, texture is used as an additional criterion to measure the level of improvement achieved in the automatic identification of Costa Rica tree species. A 25.6% improvement was achieved for a Costa Rican clean image dataset and 42.5% for a Costa Rican noisy image dataset. In both cases, our results show this increment as statistically significant. Further statistical analysis of visual noise impact, best algorithm combinations per species, and best value of
, the minimal cardinality of the set of candidate species that the tested algorithms render as best matches is also presented in this research