2 resultados para experimental approach

em Scielo Uruguai


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network Virtualization is a key technology for the Future Internet, allowing the deployment of multiple independent virtual networks that use resources of the same basic infrastructure. An important challenge in the dynamic provision of virtual networks resides in the optimal allocation of physical resources (nodes and links) to requirements of virtual networks. This problem is known as Virtual Network Embedding (VNE). For the resolution of this problem, previous research has focused on designing algorithms based on the optimization of a single objective. On the contrary, in this work we present a multi-objective algorithm, called VNE-MO-ILP, for solving dynamic VNE problem, which calculates an approximation of the Pareto Front considering simultaneously resource utilization and load balancing. Experimental results show evidences that the proposed algorithm is better or at least comparable to a state-of-the-art algorithm. Two performance metrics were simultaneously evaluated: (i) Virtual Network Request Acceptance Ratio and (ii) Revenue/Cost Relation. The size of test networks used in the experiments shows that the proposed algorithm scales well in execution times, for networks of 84 nodes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanoma is a type of skin cancer and is caused by the uncontrolled growth of atypical melanocytes. In recent decades, computer aided diagnosis is used to support medical professionals; however, there is still no globally accepted tool. In this context, similar to state-of-the-art we propose a system that receives a dermatoscopy image and provides a diagnostic if the lesion is benign or malignant. This tool is composed with next modules: Preprocessing, Segmentation, Feature Extraction, and Classification. Preprocessing involves the removal of hairs. Segmentation is to isolate the lesion. Feature extraction is considering the ABCD dermoscopy rule. The classification is performed by the Support Vector Machine. Experimental evidence indicates that the proposal has 90.63 % accuracy, 95 % sensitivity, and 83.33 % specificity on a data-set of 104 dermatoscopy images. These results are favorable considering the performance of diagnosis by traditional progress in the area of dermatology