2 resultados para electronic appetite rating system
em Scielo Uruguai
Resumo:
The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.
Resumo:
Even though the use of recommender systems is already widely spread in several application areas, there is still a lack of studies for accessibility research field. One of these attempts to use recommender system benefits for accessibility needs is Vulcanus. The Vulcanus recommender system uses similarity analysis to compare user’s trails. In this way, it is possible to take advantage of the user’s past behavior and distribute personalized content and services. The Vulcanus combined concepts from ubiquitous computing, such as user profiles, context awareness, trails management, and similarity analysis. It uses two different approaches for trails similarity analysis: resources patterns and categories patterns. In this work we performed an asymptotic analysis, identifying Vulcanus’ algorithm complexity. Furthermore we also propose improvements achieved by dynamic programming technique, so the ordinary case is improved by using a bottom-up approach. With that approach, many unnecessary comparisons can be skipped and now Vulcanus 2.0 is presented with improvements in its average case scenario.