1 resultado para Plant-based foods
em Scielo Uruguai
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (27)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biodiversity Heritage Library, United States (1)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (30)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (87)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (22)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (6)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (6)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (47)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (30)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (17)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Gulbenkian de Ciência (2)
- Instituto Nacional de Saúde de Portugal (3)
- Instituto Politécnico de Bragança (13)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (3)
- National Center for Biotechnology Information - NCBI (19)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (31)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (45)
- Queensland University of Technology - ePrints Archive (88)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (88)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Uruguai (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (40)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (3)
- University of Michigan (7)
- University of Queensland eSpace - Australia (33)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
In the last decade, research in Computer Vision has developed several algorithms to help botanists and non-experts to classify plants based on images of their leaves. LeafSnap is a mobile application that uses a multiscale curvature model of the leaf margin to classify leaf images into species. It has achieved high levels of accuracy on 184 tree species from Northeast US. We extend the research that led to the development of LeafSnap along two lines. First, LeafSnap’s underlying algorithms are applied to a set of 66 tree species from Costa Rica. Then, texture is used as an additional criterion to measure the level of improvement achieved in the automatic identification of Costa Rica tree species. A 25.6% improvement was achieved for a Costa Rican clean image dataset and 42.5% for a Costa Rican noisy image dataset. In both cases, our results show this increment as statistically significant. Further statistical analysis of visual noise impact, best algorithm combinations per species, and best value of , the minimal cardinality of the set of candidate species that the tested algorithms render as best matches is also presented in this research