1 resultado para High Performance Teams
em Scielo Uruguai
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (2)
- Brock University, Canada (4)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (91)
- CentAUR: Central Archive University of Reading - UK (31)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (129)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Digital Commons - Michigan Tech (10)
- Digital Commons at Florida International University (11)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (3)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (39)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (121)
- Queensland University of Technology - ePrints Archive (94)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (59)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Uruguai (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (15)
- University of Queensland eSpace - Australia (23)
- University of Washington (2)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.