1 resultado para Fuzzy set theory
em Scielo Uruguai
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (4)
- Aberystwyth University Repository - Reino Unido (19)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (33)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Boston University Digital Common (12)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (24)
- Central European University - Research Support Scheme (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (27)
- Cochin University of Science & Technology (CUSAT), India (20)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (13)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (34)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (6)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (33)
- Queensland University of Technology - ePrints Archive (64)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (91)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo Uruguai (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (31)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (20)
- Universitat de Girona, Spain (15)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (2)
- University of Michigan (12)
- University of Queensland eSpace - Australia (103)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality) frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease), and the main cells in each community. We analyze our approach in two cases: TGF-β and the Alzheimer Disease.