1 resultado para Benign eyelid lesion
em Scielo Uruguai
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (12)
- Aston University Research Archive (7)
- B-Digital - Universidade Fernando Pessoa - Portugal (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (39)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (94)
- Boston University Digital Common (3)
- Brock University, Canada (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (10)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (33)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (20)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (36)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (47)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Indian Institute of Science - Bangalore - Índia (20)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- National Center for Biotechnology Information - NCBI (10)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (98)
- Queensland University of Technology - ePrints Archive (156)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (185)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Uruguai (1)
- Scientific Open-access Literature Archive and Repository (4)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (2)
- University of Michigan (7)
- University of Queensland eSpace - Australia (17)
Resumo:
Melanoma is a type of skin cancer and is caused by the uncontrolled growth of atypical melanocytes. In recent decades, computer aided diagnosis is used to support medical professionals; however, there is still no globally accepted tool. In this context, similar to state-of-the-art we propose a system that receives a dermatoscopy image and provides a diagnostic if the lesion is benign or malignant. This tool is composed with next modules: Preprocessing, Segmentation, Feature Extraction, and Classification. Preprocessing involves the removal of hairs. Segmentation is to isolate the lesion. Feature extraction is considering the ABCD dermoscopy rule. The classification is performed by the Support Vector Machine. Experimental evidence indicates that the proposal has 90.63 % accuracy, 95 % sensitivity, and 83.33 % specificity on a data-set of 104 dermatoscopy images. These results are favorable considering the performance of diagnosis by traditional progress in the area of dermatology