2 resultados para fat-free mass index

em Scielo España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Body mass index (BMI) has been one of the methods most frequently used for diagnose obesity, but it isn't consider body composition. Objective: This study intends to apply one new adiposity index, the BMI adjusted for fat mass (BMIfat) developed by Mialich, et al. (2011), in a adult Brazilian sample. Methods: A cross-sectional study with 501 individuals of both genders (366 women, 135 men) aged 17 to 38 years and mean age was 20.4 ± 2.8 years, mean weight 63.0 ± 13.5 kg, mean height 166.9 ± 9.0 cm, and BMI 22.4 ± 3.4 kg/m². Results and discussion: High and satisfactory R2 values were obtained, i.e., 91.1%, 91.9% and 88.8% for the sample as a whole and for men and women, respectively. Considering this BMIfat were developed new ranges, as follows: 1.35 to 1.65 (nutritional risk for malnutrition), > 1.65 and ≤ 2.0 (normal weight) and > 2.0 (obesity). The BMIfat had a more accurate capacity of detecting obese individuals (0.980. 0.993, 0.974) considering the sample as a whole and women and men, respectively, compared to the traditional BMI (0.932, 0.956, 0.95). Were also defined new cut-off points for the traditional BMI for the classification of obesity, i.e.: 25.24 kg/m² and 28.38 kg/m² for men and women, respectively. Conclusion: The BMIfat was applied for the present population and can be adopted in clinical practice. Further studies are needed to determine its application to different ethnic groups and to compare this index to others previously described in the scientific literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The different body components may contribute to the development of insulin resistance and type 2 diabetes mellitus. The aim of the present study was to examine the association of fat mass and fat free mass indices with markers of insulin resistance, independently of each other and giving, at the same time, gender-specific information in a wide cohort of European adolescents. Methods: A cross-sectional study in a school setting was conducted in 925 (430 males) adolescents (14.9 ± 1.2 years). Weight, height, anthropometric, bioimpedance and blood parameters were measured. Indices for fat mass and fat free mass, and homeostatic model assessment (HOMA) were calculated. Multiple regression analyses were performed adjusting for several confounders including fat free mass and fat mass when possible. Results: Indices of fat mass were positively associated with HOMA (all p < 0.01) after adjusting for all the confounders including fat free mass indices, in both sexes. Fat free mass indices were associated with HOMA, in both males and females, after adjusting for center, pubertal status, socioeconomic status and cardiorespiratory fitness, but the associations disappear when including fat mass indices in the adjustment's model. Conclusion: Fat mass indices derived from different methods are positively associated with insulin resistance independently of several confounders including fat free mass indices. In addition, the relationship of fat free mass with insulin resistance is influenced by the amount of fat mass in European adolescents. Nevertheless, future studies should focus not only on the role of fat mass, but also on other body components such as fat free mass because its role could vary depending of the level and distribution of fat mass.