1 resultado para Predictive Mean Squared Efficiency
em Scielo España
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (12)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (30)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (53)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (109)
- Helda - Digital Repository of University of Helsinki (35)
- Indian Institute of Science - Bangalore - Índia (88)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (363)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (40)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo España (1)
- Universidad Politécnica de Madrid (8)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- University of Queensland eSpace - Australia (3)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
ABSTRACT Researchers frequently have to analyze scales in which some participants have failed to respond to some items. In this paper we focus on the exploratory factor analysis of multidimensional scales (i.e., scales that consist of a number of subscales) where each subscale is made up of a number of Likert-type items, and the aim of the analysis is to estimate participants' scores on the corresponding latent traits. We propose a new approach to deal with missing responses in such a situation that is based on (1) multiple imputation of non-responses and (2) simultaneous rotation of the imputed datasets. We applied the approach in a real dataset where missing responses were artificially introduced following a real pattern of non-responses, and a simulation study based on artificial datasets. The results show that our approach (specifically, Hot-Deck multiple imputation followed of Consensus Promin rotation) was able to successfully compute factor score estimates even for participants that have missing data.