2 resultados para Induced Oxidative Stress

em Scielo España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Studies have shown that oxidative stress, found in patients with type 2 diabetes, may be due to changes in the metabolism of minerals, such as magnesium and iron. Data related to compartmentalization of these minerals in diabetes are scarce and controversial. Objective: This study assessed the influence of magnesium on biochemical parameters of iron and oxidative stress in patients with type 2 diabetes. Methods: A case-control study in male and female subjects aged 27-59 years, divided into two groups: type 2 diabetes (n=40) and control (n=48). Intake of magnesium and iron was assessed by three-day food record. Plasma, erythrocyte and urinary levels of magnesium, serum iron, ferritin, total iron binding capacity, fasting glucose, glycated hemoglobin, insulin, creatinine clearance and plasma thiobarbituric acid reactive substances (TBARS) were analyzed. Results and Discussion: Magnesium intake and plasma magnesium were lower in diabetic subjects. There was low urinary magnesium excretion, with no difference between groups. Although normal, the diabetic group had lower serum iron and ferritin concentrations compared to control subjects. Plasma TBARS in diabetic patients was higher than control while creatinine clearance was lower. An inverse correlation between erythrocyte magnesium and serum iron and ferritin was observed in the diabetes group. Conclusions: Diabetes induced hypomagnesemia and this, associated with chronic hyperglycemia, may have enhanced oxidative stress. Erythrocyte magnesium may have contributed to prevent iron overload and worsening of oxidative stress and hyperglycemic status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: We evaluated the protective activity of an extract from a by-product such as olive stones, through its ability to inhibit H2O2 induced apoptosis in the SH-SY5Y human neuroblastoma cell line. Material and methods: To such end, 20,000 cells/well were cultivated and differentiation with retinoic acid was initiated. Once the cells were differentiated, apoptosis was induced with and without H2O2 extract. Finally, cDNA extraction was performed, and pro-apoptotic genes Bax and anti-apoptotic genes Bcl-2 were analyzed. Quantification of the gene expression was performed using the GAPDH gene marker. Results: Cell viability with the extract is 97.6% (SD 5.7) with 10 mg/l and 62.8% (SD 1.2) to 50 mg/l, using 10 mg/l for the biomarker assay. The retinoic acid differentiated SH-S cell line (10 µM) shows a clear apoptosis when treated with H2O2 150 µM, with a Bax/Bcl-2 ratio of 3.75 (SD 0.80) in contrast to the differentiated control cells subjected to H2O2 and with extract, which have the same ratio of 1.02 (SD 0.01-0.03). Conclusion: The olive stone extract shows anti-apoptotic activity in the provoked cell death of SH-SY5Y human neuroblastoma cells in their normal state, defending them from oxidative stress which produces a significant increase in the apoptotic gene ratio in contrast to anti-apoptotic genes (Bax/Bcl-2).