2 resultados para Age-adjusted comorbidity index
em Scielo España
Resumo:
Background: The use of sagittal abdominal diameter (SAD) has been proposed for screening cardio-metabolic risk factors; however, its accuracy can be influenced by the choice of thresholds values. Aim: To determine the SAD threshold values for cardio-metabolic risk factors in Mexican adults; to assess whether parallel and serial SAD testing can improve waist circumference (WC) sensitivity and specificity; and to analyze the effect of considering SAD along with WC and body mass index (BMI) in detecting cardio-metabolic risk. Methods: This cross-sectional study was conducted during 2012-2014 in Northeast Mexico (n = 269). Data on anthropometric, clinical, and biochemical measurements were collected. Sex-adjusted receiver-operating characteristic curves (ROC) were obtained using hypertension, dysglycemia, dyslipidemia and insulin resistance as individual outcomes and metabolic syndrome as a composite outcome. Age-adjusted odds ratios and 95% confidence intervals (CI) were estimated using logistic regression. Results: The threshold value for SAD with acceptable combination of sensitivity and specificity was 24.6 cm in men and 22.5 cm in women. Parallel SAD testing improved WC sensitivity and serial testing improved WC specificity. The co-occurrence of high WC/high SAD increased the risk for insulin resistance by 2.4-fold (95% CI: 1.1-5.3), high BMI/high SAD by 4.3-fold (95% CI: 1.7-11.9) and SAD alone by 2.2-fold (95% CI: 1.2.-4.2). Conclusions: The use of SAD together with traditional obesity indices such as WC and BMI has advantages over using either of these indices alone. SAD may be a powerful screening tool for interventions for high-risk individuals.
Resumo:
Introduction: Body mass index (BMI) has been one of the methods most frequently used for diagnose obesity, but it isn't consider body composition. Objective: This study intends to apply one new adiposity index, the BMI adjusted for fat mass (BMIfat) developed by Mialich, et al. (2011), in a adult Brazilian sample. Methods: A cross-sectional study with 501 individuals of both genders (366 women, 135 men) aged 17 to 38 years and mean age was 20.4 ± 2.8 years, mean weight 63.0 ± 13.5 kg, mean height 166.9 ± 9.0 cm, and BMI 22.4 ± 3.4 kg/m². Results and discussion: High and satisfactory R2 values were obtained, i.e., 91.1%, 91.9% and 88.8% for the sample as a whole and for men and women, respectively. Considering this BMIfat were developed new ranges, as follows: 1.35 to 1.65 (nutritional risk for malnutrition), > 1.65 and ≤ 2.0 (normal weight) and > 2.0 (obesity). The BMIfat had a more accurate capacity of detecting obese individuals (0.980. 0.993, 0.974) considering the sample as a whole and women and men, respectively, compared to the traditional BMI (0.932, 0.956, 0.95). Were also defined new cut-off points for the traditional BMI for the classification of obesity, i.e.: 25.24 kg/m² and 28.38 kg/m² for men and women, respectively. Conclusion: The BMIfat was applied for the present population and can be adopted in clinical practice. Further studies are needed to determine its application to different ethnic groups and to compare this index to others previously described in the scientific literature.