9 resultados para evaluation algorithm
em Universidad Polit
Resumo:
Esta tesis realiza una contribución metodológica al problema de la gestión óptima de embalses hidroeléctricos durante eventos de avenidas, considerando un enfoque estocástico y multiobjetivo. Para ello se propone una metodología de evaluación de estrategias de laminación en un contexto probabilístico y multiobjetivo. Además se desarrolla un entorno dinámico de laminación en tiempo real con pronósticos que combina un modelo de optimización y algoritmos de simulación. Estas herramientas asisten a los gestores de las presas en la toma de decisión respecto de cuál es la operación más adecuada del embalse. Luego de una detallada revisión de la bibliografía, se observó que los trabajos en el ámbito de la gestión óptima de embalses en avenidas utilizan, en general, un número reducido de series de caudales o hidrogramas para caracterizar los posibles escenarios. Limitando el funcionamiento satisfactorio de un modelo determinado a situaciones hidrológicas similares. Por otra parte, la mayoría de estudios disponibles en este ámbito abordan el problema de la laminación en embalses multipropósito durante la temporada de avenidas, con varios meses de duración. Estas características difieren de la realidad de la gestión de embalses en España. Con los avances computacionales en materia de gestión de información en tiempo real, se observó una tendencia a la implementación de herramientas de operación en tiempo real con pronósticos para determinar la operación a corto plazo (involucrando el control de avenidas). La metodología de evaluación de estrategias propuesta en esta tesis se basa en determinar el comportamiento de éstas frente a un espectro de avenidas características de la solicitación hidrológica. Con ese fin, se combina un sistema de evaluación mediante indicadores y un entorno de generación estocástica de avenidas, obteniéndose un sistema implícitamente estocástico. El sistema de evaluación consta de tres etapas: caracterización, síntesis y comparación, a fin de poder manejar la compleja estructura de datos resultante y realizar la evaluación. En la primera etapa se definen variables de caracterización, vinculadas a los aspectos que se quieren evaluar (seguridad de la presa, control de inundaciones, generación de energía, etc.). Estas variables caracterizan el comportamiento del modelo para un aspecto y evento determinado. En la segunda etapa, la información de estas variables se sintetiza en un conjunto de indicadores, lo más reducido posible. Finalmente, la comparación se lleva a cabo a partir de la comparación de esos indicadores, bien sea mediante la agregación de dichos objetivos en un indicador único, o bien mediante la aplicación del criterio de dominancia de Pareto obteniéndose un conjunto de soluciones aptas. Esta metodología se aplicó para calibrar los parámetros de un modelo de optimización de embalse en laminación y su comparación con otra regla de operación, mediante el enfoque por agregación. Luego se amplió la metodología para evaluar y comparar reglas de operación existentes para el control de avenidas en embalses hidroeléctricos, utilizando el criterio de dominancia. La versatilidad de la metodología permite otras aplicaciones, tales como la determinación de niveles o volúmenes de seguridad, o la selección de las dimensiones del aliviadero entre varias alternativas. Por su parte, el entorno dinámico de laminación al presentar un enfoque combinado de optimización-simulación, permite aprovechar las ventajas de ambos tipos de modelos, facilitando la interacción con los operadores de las presas. Se mejoran los resultados respecto de los obtenidos con una regla de operación reactiva, aun cuando los pronósticos se desvían considerablemente del hidrograma real. Esto contribuye a reducir la tan mencionada brecha entre el desarrollo teórico y la aplicación práctica asociada a los modelos de gestión óptima de embalses. This thesis presents a methodological contribution to address the problem about how to operate a hydropower reservoir during floods in order to achieve an optimal management considering a multiobjective and stochastic approach. A methodology is proposed to assess the flood control strategies in a multiobjective and probabilistic framework. Additionally, a dynamic flood control environ was developed for real-time operation, including forecasts. This dynamic platform combines simulation and optimization models. These tools may assist to dam managers in the decision making process, regarding the most appropriate reservoir operation to be implemented. After a detailed review of the bibliography, it was observed that most of the existing studies in the sphere of flood control reservoir operation consider a reduce number of hydrographs to characterize the reservoir inflows. Consequently, the adequate functioning of a certain strategy may be limited to similar hydrologic scenarios. In the other hand, most of the works in this context tackle the problem of multipurpose flood control operation considering the entire flood season, lasting some months. These considerations differ from the real necessity in the Spanish context. The implementation of real-time reservoir operation is gaining popularity due to computational advances and improvements in real-time data management. The methodology proposed in this thesis for assessing the strategies is based on determining their behavior for a wide range of floods, which are representative of the hydrological forcing of the dam. An evaluation algorithm is combined with a stochastic flood generation system to obtain an implicit stochastic analysis framework. The evaluation system consists in three stages: characterizing, synthesizing and comparing, in order to handle the complex structure of results and, finally, conduct the evaluation process. In the first stage some characterization variables are defined. These variables should be related to the different aspects to be evaluated (such as dam safety, flood protection, hydropower, etc.). Each of these variables characterizes the behavior of a certain operating strategy for a given aspect and event. In the second stage this information is synthesized obtaining a reduced group of indicators or objective functions. Finally, the indicators are compared by means of an aggregated approach or by a dominance criterion approach. In the first case, a single optimum solution may be achieved. However in the second case, a set of good solutions is obtained. This methodology was applied for calibrating the parameters of a flood control model and to compare it with other operating policy, using an aggregated method. After that, the methodology was extent to assess and compared some existing hydropower reservoir flood control operation, considering the Pareto approach. The versatility of the method allows many other applications, such as determining the safety levels, defining the spillways characteristics, among others. The dynamic framework for flood control combines optimization and simulation models, exploiting the advantages of both techniques. This facilitates the interaction between dam operators and the model. Improvements are obtained applying this system when compared with a reactive operating policy, even if the forecasts deviate significantly from the observed hydrograph. This approach contributes to reduce the gap between the theoretical development in the field of reservoir management and its practical applications.
Resumo:
When designing human-machine interfaces it is important to consider not only the bare bones functionality but also the ease of use and accessibility it provides. When talking about voice-based inter- faces, it has been proven that imbuing expressiveness into the synthetic voices increases signi?cantly its perceived naturalness, which in the end is very helpful when building user friendly interfaces. This paper proposes an adaptation based expressiveness transplantation system capable of copying the emotions of a source speaker into any desired target speaker with just a few minutes of read speech and without requiring the record- ing of additional expressive data. This system was evaluated through a perceptual test for 3 speakers showing up to an average of 52% emotion recognition rates relative to the natural voice recognition rates, while at the same time keeping good scores in similarity and naturality.
Resumo:
We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies.
Resumo:
The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity.
Resumo:
In this work, the dimensional synthesis of a spherical Parallel Manipulator (PM) with a -1S kinematic chain is presented. The goal of the synthesis is to find a set of parameters that defines the PM with the best performance in terms of workspace capabilities, dexterity and isotropy. The PM is parametrized in terms of a reference element, and a non-directed search of these parameters is carried out. First, the inverse kinematics and instantaneous kinematics of the mechanism are presented. The latter is found using the screw theory formulation. An algorithm that explores a bounded set of parameters and determines the corresponding value of global indexes is presented. The concepts of a novel global performance index and a compound index are introduced. Simulation results are shown and discussed. The best PMs found in terms of each performance index evaluated are locally analyzed in terms of its workspace and local dexterity. The relationship between the performance of the PM and its parameters is discussed, and a prototype with the best performance in terms of the compound index is presented and analyzed.
Resumo:
Esta tesis propone un sistema biométrico de geometría de mano orientado a entornos sin contacto junto con un sistema de detección de estrés capaz de decir qué grado de estrés tiene una determinada persona en base a señales fisiológicas Con respecto al sistema biométrico, esta tesis contribuye con el diseño y la implementación de un sistema biométrico de geometría de mano, donde la adquisición se realiza sin ningún tipo de contacto, y el patrón del usuario se crea considerando únicamente datos del propio individuo. Además, esta tesis propone un algoritmo de segmentación multiescala para solucionar los problemas que conlleva la adquisición de manos en entornos reales. Por otro lado, respecto a la extracción de características y su posterior comparación esta tesis tiene una contribución específica, proponiendo esquemas adecuados para llevar a cabo tales tareas con un coste computacional bajo pero con una alta precisión en el reconocimiento de personas. Por último, este sistema es evaluado acorde a la norma estándar ISO/IEC 19795 considerando seis bases de datos públicas. En relación al método de detección de estrés, esta tesis propone un sistema basado en dos señales fisiológicas, concretamente la tasa cardiaca y la conductancia de la piel, así como la creación de un innovador patrón de estrés que recoge el comportamiento de ambas señales bajo las situaciones de estrés y no-estrés. Además, este sistema está basado en lógica difusa para decidir el grado de estrés de un individuo. En general, este sistema es capaz de detectar estrés de forma precisa y en tiempo real, proporcionando una solución adecuada para sistemas biométricos actuales, donde la aplicación del sistema de detección de estrés es directa para evitar situaciónes donde los individuos sean forzados a proporcionar sus datos biométricos. Finalmente, esta tesis incluye un estudio de aceptabilidad del usuario, donde se evalúa cuál es la aceptación del usuario con respecto a la técnica biométrica propuesta por un total de 250 usuarios. Además se incluye un prototipo implementado en un dispositivo móvil y su evaluación. ABSTRACT: This thesis proposes a hand biometric system oriented to unconstrained and contactless scenarios together with a stress detection method able to elucidate to what extent an individual is under stress based on physiological signals. Concerning the biometric system, this thesis contributes with the design and implementation of a hand-based biometric system, where the acquisition is carried out without contact and the template is created only requiring information from a single individual. In addition, this thesis proposes an algorithm based on multiscale aggregation in order to tackle with the problem of segmentation in real unconstrained environments. Furthermore, feature extraction and matching are also a specific contributions of this thesis, providing adequate schemes to carry out both actions with low computational cost but with certain recognition accuracy. Finally, this system is evaluated according to international standard ISO/IEC 19795 considering six public databases. In relation to the stress detection method, this thesis proposes a system based on two physiological signals, namely heart rate and galvanic skin response, with the creation of an innovative stress detection template which gathers the behaviour of both physiological signals under both stressing and non-stressing situations. Besides, this system is based on fuzzy logic to elucidate the level of stress of an individual. As an overview, this system is able to detect stress accurately and in real-time, providing an adequate solution for current biometric systems, where the application of a stress detection system is direct to avoid situations where individuals are forced to provide the biometric data. Finally, this thesis includes a user acceptability evaluation, where the acceptance of the proposed biometric technique is assessed by a total of 250 individuals. In addition, this thesis includes a mobile implementation prototype and its evaluation.
Resumo:
Subtraction of Ictal SPECT Co-registered to MRI (SISCOM) is an imaging technique used to localize the epileptogenic focus in patients with intractable partial epilepsy. The aim of this study was to determine the accuracy of registration algorithms involved in SISCOM analysis using FocusDET, a new user-friendly application. To this end, Monte Carlo simulation was employed to generate realistic SPECT studies. Simulated sinograms were reconstructed by using the Filtered BackProjection (FBP) algorithm and an Ordered Subsets Expectation Maximization (OSEM) reconstruction method that included compensation for all degradations. Registration errors in SPECT-SPECT and SPECT-MRI registration were evaluated by comparing the theoretical and actual transforms. Patient studies with well-localized epilepsy were also included in the registration assessment. Global registration errors including SPECT-SPECT and SPECT-MRI registration errors were less than 1.2 mm on average, exceeding the voxel size (3.32 mm) of SPECT studies in no case. Although images reconstructed using OSEM led to lower registration errors than images reconstructed with FBP, differences after using OSEM or FBP in reconstruction were less than 0.2 mm on average. This indicates that correction for degradations does not play a major role in the SISCOM process, thereby facilitating the application of the methodology in centers where OSEM is not implemented with correction of all degradations. These findings together with those obtained by clinicians from patients via MRI, interictal and ictal SPECT and video-EEG, show that FocusDET is a robust application for performing SISCOM analysis in clinical practice.
Resumo:
Case-based reasoning (CBR) is a unique tool for the evaluation of possible failure of firms (EOPFOF) for its eases of interpretation and implementation. Ensemble computing, a variation of group decision in society, provides a potential means of improving predictive performance of CBR-based EOPFOF. This research aims to integrate bagging and proportion case-basing with CBR to generate a method of proportion bagging CBR for EOPFOF. Diverse multiple case bases are first produced by multiple case-basing, in which a volume parameter is introduced to control the size of each case base. Then, the classic case retrieval algorithm is implemented to generate diverse member CBR predictors. Majority voting, the most frequently used mechanism in ensemble computing, is finally used to aggregate outputs of member CBR predictors in order to produce final prediction of the CBR ensemble. In an empirical experiment, we statistically validated the results of the CBR ensemble from multiple case bases by comparing them with those of multivariate discriminant analysis, logistic regression, classic CBR, the best member CBR predictor and bagging CBR ensemble. The results from Chinese EOPFOF prior to 3 years indicate that the new CBR ensemble, which significantly improved CBRs predictive ability, outperformed all the comparative methods.
Resumo:
The importance of vision-based systems for Sense-and-Avoid is increasing nowadays as remotely piloted and autonomous UAVs become part of the non-segregated airspace. The development and evaluation of these systems demand flight scenario images which are expensive and risky to obtain. Currently Augmented Reality techniques allow the compositing of real flight scenario images with 3D aircraft models to produce useful realistic images for system development and benchmarking purposes at a much lower cost and risk. With the techniques presented in this paper, 3D aircraft models are positioned firstly in a simulated 3D scene with controlled illumination and rendering parameters. Realistic simulated images are then obtained using an image processing algorithm which fuses the images obtained from the 3D scene with images from real UAV flights taking into account on board camera vibrations. Since the intruder and camera poses are user-defined, ground truth data is available. These ground truth annotations allow to develop and quantitatively evaluate aircraft detection and tracking algorithms. This paper presents the software developed to create a public dataset of 24 videos together with their annotations and some tracking application results.