3 resultados para Teacher Education and Professional Development
em Universidad Polit
Resumo:
Nowadays, computer simulators are becoming basic tools for education and training in many engineering fields. In the nuclear industry, the role of simulation for training of operators of nuclear power plants is also recognized of the utmost relevance. As an example, the International Atomic Energy Agency sponsors the development of nuclear reactor simulators for education, and arranges the supply of such simulation programs. Aware of this, in 2008 Gas Natural Fenosa, a Spanish gas and electric utility that owns and operate nuclear power plants and promotes university education in the nuclear technology field, provided the Department of Nuclear Engineering of Universidad Politécnica de Madrid with the Interactive Graphic Simulator (IGS) of “José Cabrera” (Zorita) nuclear power plant, an industrial facility whose commercial operation ceased definitively in April 2006. It is a state-of-the-art full-scope real-time simulator that was used for training and qualification of the operators of the plant control room, as well as to understand and analyses the plant dynamics, and to develop, qualify and validate its emergency operating procedures.
Resumo:
The main purpose of this work is to describe the case of an online Java Programming course for engineering students to learn computer programming and to practice other non-technicalabilities: online training, self-assessment, teamwork and use of foreign languages. It is important that students develop confidence and competence in these skills, which will be required later in their professional tasks and/or in other engineering courses (life-long learning). Furthermore, this paper presents the pedagogical methodology, the results drawn from this experience and an objective performance comparison with another conventional (face-to-face) Java course.
Resumo:
This paper presents a project for providing the students of Structural Engineering with the flexibility to learn outside classroom schedules. The goal is a framework for adaptive E-learning based on a repository of open educational courseware with a set of basic Structural Engineering concepts and fundamentals. These are paramount for students to expand their technical knowledge and skills in structural analysis and design of tall buildings, arch-type structures as well as bridges. Thus, concepts related to structural behaviour such as linearity, compatibility, stiffness and influence lines have traditionally been elusive for students. The objective is to facilitate the student a teachinglearning process to acquire the necessary intuitive knowledge, cognitive skills and the basis for further technological modules and professional development in this area. As a side effect, the system is expected to help the students improve their preparation for exams on the subject. In this project, a web-based open-source system for studying influence lines on continuous beams is presented. It encompasses a collection of interactive user-friendly applications accessible via Web, written in JavaScript under JQuery and Dygraph Libraries, taking advantage of their efficiency and graphic capabilities. It is performed in both Spanish and English languages. The student is enabled to set the geometric, topologic, boundary and mechanic layout of a continuous beam. While changing the loading and the support conditions, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. This open interaction with the user allows the student to simulate and virtually infer the structural response. Different levels of complexity can be handled, whereas an ongoing help is at hand for any of them. Students can freely boost their experiential learning on this subject at their own pace, in order to further share, process, generalize and apply the relevant essential concepts of Structural Engineering analysis. Besides, this collection is being added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)