37 resultados para Non-parametric methods

em Universidad Polit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the physical properties of the panels due to aging. The authors propose several models to estimate board density. The best results are obtained with ultrasound. A reliable prediction of the degree of deterioration (aging) of board is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn?t be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don?t have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: ? Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R pvalue. In this way we consider the implications of reducing the number of points. ? Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography?mass spectrometry (GC?MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p < 0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations ?57.0 ng g?1 before plow and ?62.3 ng g?1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water fromWWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several meta-analysis methods can be used to quantitatively combine the results of a group of experiments, including the weighted mean difference, statistical vote counting, the parametric response ratio and the non-parametric response ratio. The software engineering community has focused on the weighted mean difference method. However, other meta-analysis methods have distinct strengths, such as being able to be used when variances are not reported. There are as yet no guidelines to indicate which method is best for use in each case. Aim: Compile a set of rules that SE researchers can use to ascertain which aggregation method is best for use in the synthesis phase of a systematic review. Method: Monte Carlo simulation varying the number of experiments in the meta analyses, the number of subjects that they include, their variance and effect size. We empirically calculated the reliability and statistical power in each case Results: WMD is generally reliable if the variance is low, whereas its power depends on the effect size and number of subjects per meta-analysis; the reliability of RR is generally unaffected by changes in variance, but it does require more subjects than WMD to be powerful; NPRR is the most reliable method, but it is not very powerful; SVC behaves well when the effect size is moderate, but is less reliable with other effect sizes. Detailed tables of results are annexed. Conclusions: Before undertaking statistical aggregation in software engineering, it is worthwhile checking whether there is any appreciable difference in the reliability and power of the methods. If there is, software engineers should select the method that optimizes both parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The important technological advances experienced along the last years have resulted in an important demand for new and efficient computer vision applications. On the one hand, the increasing use of video editing software has given rise to a necessity for faster and more efficient editing tools that, in a first step, perform a temporal segmentation in shots. On the other hand, the number of electronic devices with integrated cameras has grown enormously. These devices require new, fast, and efficient computer vision applications that include moving object detection strategies. In this dissertation, we propose a temporal segmentation strategy and several moving object detection strategies, which are suitable for the last generation of computer vision applications requiring both low computational cost and high quality results. First, a novel real-time high-quality shot detection strategy is proposed. While abrupt transitions are detected through a very fast pixel-based analysis, gradual transitions are obtained from an efficient edge-based analysis. Both analyses are reinforced with a motion analysis that allows to detect and discard false detections. This analysis is carried out exclusively over a reduced amount of candidate transitions, thus maintaining the computational requirements. On the other hand, a moving object detection strategy, which is based on the popular Mixture of Gaussians method, is proposed. This strategy, taking into account the recent history of each image pixel, adapts dynamically the amount of Gaussians that are required to model its variations. As a result, we improve significantly the computational efficiency with respect to other similar methods and, additionally, we reduce the influence of the used parameters in the results. Alternatively, in order to improve the quality of the results in complex scenarios containing dynamic backgrounds, we propose different non-parametric based moving object detection strategies that model both background and foreground. To obtain high quality results regardless of the characteristics of the analyzed sequence we dynamically estimate the most adequate bandwidth matrices for the kernels that are used in the background and foreground modeling. Moreover, the application of a particle filter allows to update the spatial information and provides a priori knowledge about the areas to analyze in the following images, enabling an important reduction in the computational requirements and improving the segmentation results. Additionally, we propose the use of an innovative combination of chromaticity and gradients that allows to reduce the influence of shadows and reflects in the detections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following the success achieved in previous research projects usin non-destructive methods to estimate the physical and mechanical aging of particle and fibre boards, this paper studies the relationships between aging, physical and mechanical changes, using non-destructive measurements of oriented strand board (OSB). 184 pieces of OSB board from a French source were tested to analyze its actual physical and mechanical properties. The same properties were estimated using acoustic non-destructive methods (ultrasound and stress wave velocity) during a physical laboratory aging test. Measurements were recorded of propagation wave velocity with the sensors aligned, edge to edge, and forming an angle of 45 degrees, with both sensors on the same face of the board. This is because aligned measures are not possible on site. The velocity results are always higher in 45 degree measurements. Given the results of statistical analysis, it can be concluded that there is a strong relationship between acoustic measurements and the decline in physical and mechanical properties of the panels due to aging. The authors propose several models to estimate the physical and mechanical properties of board, as well as their degree of aging. The best results are obtained using ultrasound, although the difference in comparison with the stress wave method is not very significant. A reliable prediction of the degree of deterioration (aging) of board is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of AD

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Department of Structural Analysis of the University of Santander has been for a longtime involved in the solution of the country´s practical engineering problems. Some of these have required the use of non-conventional methods of analysis, in order to achieve adequate engineering answers. As an example of the increasing application of non-linear computer codes in the nowadays engineering practice, some cases will be briefly presented. In each case, only the main features of the problem involved and the solution used to solve it will be shown

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index-ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El estudio de la fiabilidad de componentes y sistemas tiene gran importancia en diversos campos de la ingenieria, y muy concretamente en el de la informatica. Al analizar la duracion de los elementos de la muestra hay que tener en cuenta los elementos que no fallan en el tiempo que dure el experimento, o bien los que fallen por causas distintas a la que es objeto de estudio. Por ello surgen nuevos tipos de muestreo que contemplan estos casos. El mas general de ellos, el muestreo censurado, es el que consideramos en nuestro trabajo. En este muestreo tanto el tiempo hasta que falla el componente como el tiempo de censura son variables aleatorias. Con la hipotesis de que ambos tiempos se distribuyen exponencialmente, el profesor Hurt estudio el comportamiento asintotico del estimador de maxima verosimilitud de la funcion de fiabilidad. En principio parece interesante utilizar metodos Bayesianos en el estudio de la fiabilidad porque incorporan al analisis la informacion a priori de la que se dispone normalmente en problemas reales. Por ello hemos considerado dos estimadores Bayesianos de la fiabilidad de una distribucion exponencial que son la media y la moda de la distribucion a posteriori. Hemos calculado la expansion asint6tica de la media, varianza y error cuadratico medio de ambos estimadores cuando la distribuci6n de censura es exponencial. Hemos obtenido tambien la distribucion asintotica de los estimadores para el caso m3s general de que la distribucion de censura sea de Weibull. Dos tipos de intervalos de confianza para muestras grandes se han propuesto para cada estimador. Los resultados se han comparado con los del estimador de maxima verosimilitud, y con los de dos estimadores no parametricos: limite producto y Bayesiano, resultando un comportamiento superior por parte de uno de nuestros estimadores. Finalmente nemos comprobado mediante simulacion que nuestros estimadores son robustos frente a la supuesta distribuci6n de censura, y que uno de los intervalos de confianza propuestos es valido con muestras pequenas. Este estudio ha servido tambien para confirmar el mejor comportamiento de uno de nuestros estimadores. SETTING OUT AND SUMMARY OF THE THESIS When we study the lifetime of components it's necessary to take into account the elements that don't fail during the experiment, or those that fail by reasons which are desirable to exclude from consideration. The model of random censorship is very usefull for analysing these data. In this model the time to failure and the time censor are random variables. We obtain two Bayes estimators of the reliability function of an exponential distribution based on randomly censored data. We have calculated the asymptotic expansion of the mean, variance and mean square error of both estimators, when the censor's distribution is exponential. We have obtained also the asymptotic distribution of the estimators for the more general case of censor's Weibull distribution. Two large-sample confidence bands have been proposed for each estimator. The results have been compared with those of the maximum likelihood estimator, and with those of two non parametric estimators: Product-limit and Bayesian. One of our estimators has the best behaviour. Finally we have shown by simulation, that our estimators are robust against the assumed censor's distribution, and that one of our intervals does well in small sample situation.