2 resultados para Event Scale
em Universidad Polit
Resumo:
To date, big data applications have focused on the store-and-process paradigm. In this paper we describe an initiative to deal with big data applications for continuous streams of events. In many emerging applications, the volume of data being streamed is so large that the traditional ‘store-then-process’ paradigm is either not suitable or too inefficient. Moreover, soft-real time requirements might severely limit the engineering solutions. Many scenarios fit this description. In network security for cloud data centres, for instance, very high volumes of IP packets and events from sensors at firewalls, network switches and routers and servers need to be analyzed and should detect attacks in minimal time, in order to limit the effect of the malicious activity over the IT infrastructure. Similarly, in the fraud department of a credit card company, payment requests should be processed online and need to be processed as quickly as possible in order to provide meaningful results in real-time. An ideal system would detect fraud during the authorization process that lasts hundreds of milliseconds and deny the payment authorization, minimizing the damage to the user and the credit card company.
Resumo:
In this introductory chapter we put in context and give a brief outline of the work that we thoroughly present in the rest of the dissertation. We consider this work divided in two main parts. The first part is the Firenze Framework, a knowledge level description framework rich enough to express the semantics required for describing both semantic Web services and semantic Grid services. We start by defining what the Semantic Grid is and its relation with the Semantic Web; and the possibility of their convergence since both initiatives have become mainly service-oriented. We also introduce the main motivators of the creation of this framework, one is to provide a valid description framework that works at knowledge level; the other to provide a description framework that takes into account the characteristics of Grid services in order to be able to describe them properly. The other part of the dissertation is devoted to Vega, an event-driven architecture that, by means of proposed knowledge level description framework, is able to achieve high scale provisioning of knowledge-intensive services. In this introductory chapter we portrait the anatomy of a generic event-driven architecture, and we briefly enumerate their main characteristics, which are the reason that make them our choice.